Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(44): 41718-41727, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37969993

RESUMEN

Although soybean (Glycine max) leaves generate building blocks to produce seeds, a comprehensive understanding of the metabolic changes in soybean leaves during the entire growth stages is limited. Here, we investigated the metabolite changes in soybean leaves from five cultivars among four vegetative (V) and eight reproductive (R) stages using metabolite profiling coupled with chemometrics. Principal component analysis (PCA) of all samples showed a clear separation by growth stage. The total amount of monosaccharides and organic acids for energy production were highly detected in the V stage samples, accumulating in concentrations 2.5 and 1.7 times higher than in the R stage samples, respectively. The results of partial least-squares-discriminant analysis (PLS-DA) revealed a clear separation from R1 to R5 by the first PLS, suggesting significant alterations in the metabolic networks up to R5. After flowering, the stage of seed formation, R5, was associated with lower levels of most amino acids and an accumulation of phytosterols. The negative correlation observed between amino acids and phytosterol levels suggests a sophisticated coordination between carbon and nitrogen metabolism in plant, ensuring and supporting optimal growth (r = -0.50085, P = 0.0001). In addition, R-stage samples had decreased monosaccharide levels, indicating redistribution to seeds and senescence-related metabolite changes. Thus, metabolite profiling coupled with chemometrics could be a useful tool for investigating alterations in metabolic networks during various plant growth and development stages. Furthermore, we observed variations in flavonoid contents among the different cultivars. The results could be a basis of further studies on the source-sink interactions in the plant system.

2.
Front Plant Sci ; 13: 1034893, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582649

RESUMEN

Introduction: The monoterpenoid linalool and sesquiterpenoid costunolide are ubiquitous plant components that have been economically exploited for their respective essential oils and pharmaceutical benefits. In general, monoterpenes and sesquiterpenes are produced by the plastid 2-C-methyl-D-erythritol 4-phosphate (MEP) and cytosolic mevalonate (MVA) pathways, respectively. Herein, we investigated the individual and combinatorial potential of MEP and MVA pathway genes in increasing linalool and costunolide production in Nicotiana benthamiana. Methods: First, six genes from the MEP (1-deoxy-D-xylulose-5-phosphate synthase, 1-deoxy-D-xylulose 5-phosphate reductoisomerase, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, geranyl pyrophosphate synthase, and linalool synthase) and MVA (acetoacetyl-CoA-thiolase, hydroxy-3-methylglutaryl-CoA reductase, farnesyl pyrophosphate synthase, germacrene A synthase, germacrene A oxidase, and costunolide synthase) pathways were separately cloned into the modular cloning (MoClo) golden gateway cassette. Second, the cassettes were transformed individually or in combination into the leaves of N. benthamiana by agroinfiltration. Results and discussion: Five days post infiltration (DPI), all selected genes were transiently 5- to 94-fold overexpressed. Quantification using gas chromatography-Q-orbitrap-mass spectrometry (GC-Q-Orbitrap-MS) determined that the individual and combinatorial expression of MEP genes increased linalool production up to 50-90ng.mg-1 fresh leaf weight. Likewise, MVA genes increased costunolide production up to 70-90ng.mg-1 fresh leaf weight. Our findings highlight that the transient expression of MEP and MVA pathway genes (individually or in combination) enhances linalool and costunolide production in plants.

3.
Bioengineered ; 13(3): 7798-7828, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35294324

RESUMEN

Increased industrialization demand using synthetic dyes in the newspaper, cosmetics, textiles, food, and leather industries. As a consequence, harmful chemicals from dye industries are released into water reservoirs with numerous structural components of synthetic dyes, which are hazardous to the ecosystem, plants and humans. The discharge of synthetic dye into various aquatic environments has a detrimental effect on the balance and integrity of ecological systems. Moreover, numerous inorganic dyes exhibit tolerance to degradation and repair by natural and conventional processes. So, the present condition requires the development of efficient and effective waste management systems that do not exacerbate environmental stress or endanger other living forms. Numerous biological systems, including microbes and plants, have been studied for their ability to metabolize dyestuffs. To minimize environmental impact, bioremediation uses endophytic bacteria, which are plant beneficial bacteria that dwell within plants and may improve plant development in both normal and stressful environments. Moreover, Phytoremediation is suitable for treating dye contaminants produced from a wide range of sources. This review article proves a comprehensive evaluation of the most frequently utilized plant and microbes as dye removal technologies from dye-containing industrial effluents. Furthermore, this study examines current existing technologies and proposes a more efficient, cost-effective method for dye removal and decolorization on a big scale. This study also aims to focus on advanced degradation techniques combined with biological approaches, well regarded as extremely effective treatments for recalcitrant wastewater, with the greatest industrial potential.


Asunto(s)
Colorantes , Contaminantes Químicos del Agua , Bacterias , Biodegradación Ambiental , Colorantes/química , Ecosistema , Humanos , Plantas , Textiles , Aguas Residuales , Contaminantes Químicos del Agua/análisis
4.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638828

RESUMEN

The cyst nematodes Heterodera schachtii and Heterodera trifolii, whose major hosts are sugar beet and clover, respectively, damage a broad range of plants, resulting in significant economic losses. Nematodes synthesize metabolites for organismal development and social communication. We performed metabolic profiling of H. schachtii and H. trifolii in the egg, juvenile 2 (J2), and female stages. In all, 392 peaks were analyzed by capillary electrophoresis time-of-flight mass spectrometry, which revealed a lot of similarities among metabolomes. Aromatic amino acid metabolism, carbohydrate metabolism, choline metabolism, methionine salvage pathway, glutamate metabolism, urea cycle, glycolysis, gluconeogenesis, coenzyme metabolism, purine metabolism, pyrimidine metabolism, and tricarboxylic acid (TCA) cycle for energy conversion (ß-oxidation and branched-chain amino acid metabolism) energy storage were involved in all stages studied. The egg and female stages synthesized higher levels of metabolites compared to the J2 stage. The key metabolites detected were glycerol, guanosine, hydroxyproline, citric acid, phosphorylcholine, and the essential amino acids Phe, Leu, Ser, and Val. Metabolites, such as hydroxyproline, acetylcholine, serotonin, glutathione, and glutathione disulfide, which are associated with growth and reproduction, mobility, and neurotransmission, predominated in the J2 stage. Other metabolites, such as SAM, 3PSer, 3-ureidopropionic acid, CTP, UDP, UTP, 3-hydroxy-3-methylglutaric acid, 2-amino-2-(hydroxymethyl-1,3-propanediol, 2-hydroxy-4-methylvaleric acid, Gly Asp, glucuronic acid-3 + galacturonic acid-3 Ser-Glu, citrulline, and γ-Glu-Asn, were highly detected in the egg stage. Meanwhile, nicotinamide, 3-PG, F6P, Cys, ADP-Ribose, Ru5P, S7P, IMP, DAP, diethanolamine, p-Hydroxybenzoic acid, and γ-Glu-Arg_divalent were unique to the J2 stage. Formiminoglutamic acid, nicotinaminde riboside + XC0089, putrescine, thiamine 2,3-dihydroxybenzoic acid, 3-methyladenine, caffeic acid, ferulic acid, m-hydrobenzoic acid, o- and p-coumaric acid, and shikimic acid were specific to the female stage. Overall, highly similar identities and quantities of metabolites between the corresponding stages of the two species of nematode were observed. Our results will be a valuable resource for further studies of physiological changes related to the development of nematodes and nematode-plant interactions.


Asunto(s)
Beta vulgaris/parasitología , Medicago/microbiología , Metabolómica , Rabdítidos/crecimiento & desarrollo , Rabdítidos/metabolismo , Animales , Electroforesis Capilar , Espectrometría de Masas
5.
Plants (Basel) ; 10(10)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34685985

RESUMEN

Terpenoids represent one of the high-value groups of specialized metabolites with vast structural diversity. They exhibit versatile human benefits and have been successfully exploited in several sectors of day-to-day life applications, including cosmetics, foods, and pharmaceuticals. Historically, the potential use of terpenoids is challenging, and highly hampered by their bioavailability in their natural sources. Significant progress has been made in recent years to overcome such challenges by advancing the heterologous production platforms of hosts and metabolic engineering technologies. Herein, we summarize the latest developments associated with analytical platforms, metabolic engineering, and synthetic biology, with a focus on two terpenoid classes: monoterpenoids and sesquiterpenoids. Accumulated data showed that subcellular localization of both the precursor pool and the introduced enzymes were the crucial factors for increasing the production of targeted terpenoids in plants. We believe this timely review provides a glimpse of current state-of-the-art techniques/methodologies related to terpenoid engineering that would facilitate further improvements in terpenoids research.

6.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34299062

RESUMEN

Root-knot nematodes (RKNs) are a group of plant-parasitic nematodes that cause damage to various plant species and extensive economical losses. In this study, we performed integrated analysis of miRNA and mRNA expression data to explore the regulation of miRNA and mRNA in RKNs. In particular, we aimed to elucidate the mRNA targets of Meloidogyne incognita miRNAs and variations of the RKN transcriptome during five stages of its life cycle. Stage-wise RNA sequencing of M. incognita resulted in clean read numbers of 56,902,902, 50,762,456, 40,968,532, 47,309,223, and 51,730,234 for the egg, J2, J3, J4, and female stages, respectively. Overall, stage-dependent mRNA sequencing revealed that 17,423 genes were expressed in the transcriptome of M. incognita. The egg stage showed the maximum number of transcripts, and 12,803 gene transcripts were expressed in all stages. Functional Gene Ontology (GO) analysis resulted in three main GO classes: biological process, cellular components, and molecular function; the detected sequences were longer than sequences in the reference genome. Stage-wise selected fragments per kilobase of transcript per million mapped reads (FPKM) values of the top 10 stage-specific and common mRNAs were used to construct expression profiles, and 20 mRNAs were validated through quantitative real-time PCR (qRT-PCR). Next, we used three target prediction programs (miRanda, RNAhybrid, and PITA) to obtain 2431 potential target miRNA genes in RKNs, which regulate 8331 mRNAs. The predicted potential targets of miRNA were generally involved in cellular and metabolic processes, binding of molecules in the cell, membranes, and organelles. Stage-wise miRNA target analysis revealed that the egg stage contains heat shock proteins, transcriptional factors, and DNA repair proteins, whereas J2 includes DNA replication, heat shock, and ubiquitin-conjugating pathway-related proteins; the J3 and J4 stages are represented by the major sperm protein domain and translation-related proteins, respectively. In the female stage, we found proteins related to the maintenance of molybdopterin-binding domain-containing proteins and ubiquitin-mediated protein degradation. In total, 29 highly expressed stage-specific mRNA-targeting miRNAs were analyzed using qRT-PCR to validate the sequence analysis data. Overall, our findings provide new insights into the molecular mechanisms occurring at various developmental stages of the RKN life cycle, thus aiding in the identification of potential control strategies.


Asunto(s)
Redes Reguladoras de Genes , Organogénesis de las Plantas , Enfermedades de las Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Transcriptoma , Tylenchoidea/fisiología , Animales , Enfermedades de las Plantas/parasitología , Análisis de Secuencia de ARN
7.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927773

RESUMEN

Meloidogyne incognita is a devastating plant parasitic nematode that causes root knot disease in a wide range of plants. In the present study, we investigated host-induced RNA interference (RNAi) gene silencing of chitin biosynthesis pathway genes (chitin synthase, glucose-6-phosphate isomerase, and trehalase) in transgenic tobacco plants. To develop an RNAi vector, ubiquitin (UBQ1) promoter was directly cloned, and to generate an RNAi construct, expression of three genes was suppressed using the GATEWAY system. Further, transgenic Nicotiana benthamiana lines expressing dsRNA for chitin synthase (CS), glucose-6-phosphate isomerase (GPI), and trehalase 1 (TH1) were generated. Quantitative PCR analysis confirmed endogenous mRNA expression of root knot nematode (RKN) and revealed that all three genes were more highly expressed in the female stage than in eggs and in the parasitic stage. In vivo, transformed roots were challenged with M. incognita. The number of eggs and root knots were significantly decreased by 60-90% in RNAi transgenic lines. As evident, root galls obtained from transgenic RNAi lines exhibited 0.01- to 0.70-fold downregulation of transcript levels of targeted genes compared with galls isolated from control plants. Furthermore, phenotypic characteristics such as female size and width were also marginally altered, while effect of egg mass per egg number in RNAi transgenic lines was reduced. These results indicate the relevance and significance of targeting chitin biosynthesis genes during the nematode lifespan. Overall, our results suggest that further developments in RNAi efficiency in commercially valued crops can be applied to employ RNAi against other plant parasitic nematodes.


Asunto(s)
Quitina/biosíntesis , Nicotiana/genética , Control de Plagas/métodos , Plantas Modificadas Genéticamente , Tylenchoidea/genética , Animales , Quitina Sintasa/genética , Femenino , Glucosa-6-Fosfato Isomerasa/genética , Interferencia de ARN , Nicotiana/parasitología , Trehalasa/genética
8.
Metabolites ; 10(6)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560514

RESUMEN

Safflower (Carthamus tinctorius L.) has long been grown as a crop due to its commercial utility as oil, animal feed, and pharmacologically significant secondary metabolites. The integration of omics approaches, including genomics, transcriptomics, metabolomics, and proteomics datasets, has provided more comprehensive knowledge of the chemical composition of crop plants for multiple applications. Knowledge of a metabolome of plant is crucial to optimize the evolution of crop traits, improve crop yields and quality, and ensure nutritional and health factors that provide the opportunity to produce functional food or feedstuffs. Safflower contains numerous chemical components that possess many pharmacological activities including central nervous, cardiac, vascular, anticoagulant, reproductive, gastrointestinal, antioxidant, hypolipidemic, and metabolic activities, providing many other human health benefits. In addition to classical metabolite studies, this review focuses on several metabolite-based working techniques and updates to provide a summary of the current medical applications of safflower.

9.
Int J Mol Sci ; 19(4)2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670011

RESUMEN

N-linked glycosylation is one of the key post-translational modifications. α1,3-Fucosyltransferase (OsFucT) is responsible for transferring α1,3-linked fucose residues to the glycoprotein N-glycan in plants. We characterized an Osfuct mutant that displayed pleiotropic developmental defects, such as impaired anther and pollen development, diminished growth, shorter plant height, fewer tillers, and shorter panicle length and internodes under field conditions. In addition, the anthers were curved, the pollen grains were shriveled, and pollen viability and pollen number per anther decreased dramatically in the mutant. Matrix-assisted laser desorption/ionization time-of-flight analyses of the N-glycans revealed that α1,3-fucose was lacking in the N-glycan structure of the mutant. Mutant complementation revealed that the phenotype was caused by loss of Osfuct function. Transcriptome profiling also showed that several genes essential for plant developmental processes were significantly altered in the mutant, including protein kinases, transcription factors, genes involved in metabolism, genes related to protein synthesis, and hypothetical proteins. Moreover, the mutant exhibited sensitivity to an increased concentration of salt. This study facilitates a further understanding of the function of genes mediating N-glycan modification and anther and pollen development in rice.


Asunto(s)
Fucosiltransferasas/genética , Genes de Plantas , Oryza/enzimología , Oryza/genética , Polen/enzimología , Polen/crecimiento & desarrollo , Supervivencia Tisular/fisiología , Alelos , ADN Bacteriano/genética , Fucosiltransferasas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutagénesis Insercional , Mutación/genética , Oryza/anatomía & histología , Oryza/efectos de los fármacos , Fenotipo , Plantas Modificadas Genéticamente , Polen/anatomía & histología , Polen/efectos de los fármacos , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Supervivencia Tisular/efectos de los fármacos
10.
Int J Mol Sci ; 18(7)2017 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-28672815

RESUMEN

Meloidogyne incognita is a common root-knot nematode with a wide range of plant hosts. We aimed to study the metabolites produced at each stage of the nematode life cycle to understand its development. Metabolites of Meloidogyne incognita were extracted at egg, J2, J3, J4, and female stages and 110 metabolites with available standards were quantified using CE-TOF/MS. Analyses indicated abundance of stage-specific metabolites with the exception of J3 and J4 stages which shared similar metabolic profiles. The egg stage showed increased abundance in glycolysis and energy metabolism related metabolites while the J2 metabolites are associated with tissue formation, motility, and neurotransmission. The J3 and J4 stages indicated amino acid metabolism and urea cycle- related metabolites. The female stage was characterized with polyamine synthesis, antioxidant activity, and synthesis of reproduction related metabolites. Such metabolic profiling helps us understand the dynamic physiological changes related to each developmental stage of the root-knot nematode life cycle.


Asunto(s)
Metaboloma , Metabolómica , Tylenchoidea/metabolismo , Animales , Análisis por Conglomerados , Biología Computacional/métodos , Estadios del Ciclo de Vida , Redes y Vías Metabólicas , Metabolómica/métodos , Enfermedades de las Plantas/parasitología , Tylenchoidea/crecimiento & desarrollo
11.
Int J Mol Sci ; 17(10)2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27775666

RESUMEN

In this study, we investigated global changes in miRNAs of Meloidogyne incognita throughout its life cycle. Small RNA sequencing resulted in approximately 62, 38, 38, 35, and 39 Mb reads in the egg, J2, J3, J4, and female stages, respectively. Overall, we identified 2724 known and 383 novel miRNAs (read count > 10) from all stages, of which 169 known and 13 novel miRNA were common to all the five stages. Among the stage-specific miRNAs, miR-286 was highly expressed in eggs, miR-2401 in J2, miR-8 and miR-187 in J3, miR-6736 in J4, and miR-17 in the female stages. These miRNAs are reported to be involved in embryo and neural development, muscular function, and control of apoptosis. Cluster analysis indicated the presence of 91 miRNA clusters, of which 36 clusters were novel and identified in this study. Comparison of miRNA families with other nematodes showed 17 families to be commonly absent in animal parasitic nematodes and M. incognita. Validation of 43 predicted common and stage-specific miRNA by quantitative PCR (qPCR) indicated their expression in the nematode. Stage-wise exploration of M. incognita miRNAs has not been carried out before and this work presents information on common and stage-specific miRNAs of the root-knot nematode.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Estadios del Ciclo de Vida/genética , MicroARNs/genética , ARN de Helminto/genética , Tylenchoidea/genética , Animales , Secuencia de Bases , Análisis por Conglomerados , Femenino , MicroARNs/química , MicroARNs/clasificación , Modelos Moleculares , Conformación de Ácido Nucleico , Óvulo/crecimiento & desarrollo , Óvulo/metabolismo , ARN de Helminto/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Tylenchoidea/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...