Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Oncol ; 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37452637

RESUMEN

Nutrient availability is a key determinant of tumor cell behavior. While nutrient-rich conditions favor proliferation and tumor growth, scarcity, and particularly glutamine starvation, promotes cell dedifferentiation and chemoresistance. Here, linking ribosome biogenesis plasticity with tumor cell fate, we uncover that the amino acid sensor general control non-derepressible 2 (GCN2; also known as eIF-2-alpha kinase 4) represses the expression of the precursor of ribosomal RNA (rRNA), 47S, under metabolic stress. We show that blockade of GCN2 triggers cell death by an irremediable nucleolar stress and subsequent TP53-mediated apoptosis in patient-derived models of colon adenocarcinoma (COAD). In nutrient-rich conditions, a cell-autonomous GCN2 activity supports cell proliferation by stimulating 47S rRNA transcription, independently of the canonical integrated stress response (ISR) axis. Impairment of GCN2 activity prevents nuclear translocation of methionyl-tRNA synthetase (MetRS), resulting in nucleolar stress, mTORC1 inhibition and, ultimately, autophagy induction. Inhibition of the GCN2-MetRS axis drastically improves the cytotoxicity of RNA polymerase I (RNA pol I) inhibitors, including the first-line chemotherapy oxaliplatin, on patient-derived COAD tumoroids. Our data thus reveal that GCN2 differentially controls ribosome biogenesis according to the nutritional context. Furthermore, pharmacological co-inhibition of the two GCN2 branches and RNA pol I activity may represent a valuable strategy for elimination of proliferative and metabolically stressed COAD cells.

2.
FEBS J ; 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36516350

RESUMEN

Advances in cancer biology over the past decades have revealed that metabolic adaptation of cancer cells is an essential aspect of tumorigenesis. However, recent insights into tumour metabolism in vivo have revealed dissimilarities with results obtained in vitro. This is partly due to the reductionism of in vitro cancer models that struggle to reproduce the complexity of tumour tissues. This review describes some of the discrepancies in cancer cell metabolism between in vitro and in vivo conditions, and presents current methodological approaches and tools used to bridge the gap with the clinically relevant microenvironment. As such, these approaches should generate new knowledge that could be more effectively translated into therapeutic opportunities.

3.
Life Sci Alliance ; 5(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35396334

RESUMEN

The glucose-requiring hexosamine biosynthetic pathway (HBP), which produces UDP-N-acetylglucosamine for glycosylation reactions, promotes lung adenocarcinoma (LUAD) progression. However, lung tumor cells often reside in low-nutrient microenvironments, and whether the HBP is involved in the adaptation of LUAD to nutrient stress is unknown. Here, we show that the HBP and the coat complex II (COPII) play a key role in cell survival during glucose shortage. HBP up-regulation withstood low glucose-induced production of proteins bearing truncated N-glycans, in the endoplasmic reticulum. This function for the HBP, alongside COPII up-regulation, rescued cell surface expression of a subset of glycoproteins. Those included the epidermal growth factor receptor (EGFR), allowing an EGFR-dependent cell survival under low glucose in anchorage-independent growth. Accordingly, high expression of the HBP rate-limiting enzyme GFAT1 was associated with wild-type EGFR activation in LUAD patient samples. Notably, HBP and COPII up-regulation distinguished LUAD from the lung squamous-cell carcinoma subtype, thus uncovering adaptive mechanisms of LUAD to their harsh microenvironment.


Asunto(s)
Glucosa , Hexosaminas , Receptores ErbB/genética , Glucosa/metabolismo , Glicosilación , Hexosaminas/metabolismo , Humanos , Nutrientes
4.
J Inflamm Res ; 14: 2149-2156, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34045885

RESUMEN

INTRODUCTION: Most Toll-like receptors and IL-1/IL-18 receptors activate a signaling cascade via the adaptor molecule MyD88, resulting in NF-κB activation and inflammatory cytokine and chemokine production. Females are less susceptible than males to inflammatory conditions, presumably due to protection by estrogen. The exact mechanism underlying this protection is unknown. METHODS: MCF7 cells expressing wild-type or mutated LXXLL motif were used to determine MyD88/estrogen receptor (ER)-a interaction by immunoprecipitation and cell activation by ELISA and luciferase reporter assay. IL-1b and/or E2 were used to activate MCF7 cells expressing normal or knocked down levels of PRMT1. Finally, in situ proximity ligation assay with anti-MyD88 and anti-methylated ER-a (methER-a) antibodies was used to evaluate MyD88/methylated ER-a interaction in THP1 cells and histological sections. RESULTS: We show that MyD88 interacts with a methylated, cytoplasmic form of estrogen receptor-alpha (methER-α). This interaction is required for NF-κB transcriptional activity and pro-inflammatory cytokine production, and is dissociated by estrogen. Importantly, we show a strong gender segregation in gametogenic reproductive organs, with MyD88/methER-α interactions found in testicular tissues and in ovarian tissues from menopausal women, but not in ovaries from women age 49 and less - suggesting a role for estrogen in disrupting this complex in situ. DISCUSSION: Collectively, our results indicate that the formation of MyD88/methER-α complexes during inflammatory signaling and their disruption by estrogen may represent a mechanism that contributes to gender bias in inflammatory responses.

5.
Metabolites ; 11(4)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810430

RESUMEN

Genetic alterations in non-small cell lung cancers (NSCLC) stimulate the generation of energy and biomass to promote tumor development. However, the efficacy of the translation process is finely regulated by stress sensors, themselves often controlled by nutrient availability and chemotoxic agents. Yet, the crosstalk between therapeutic treatment and glucose availability on cell mass generation remains understudied. Herein, we investigated the impact of pemetrexed (PEM) treatment, a first-line agent for NSCLC, on protein synthesis, depending on high or low glucose availability. PEM treatment drastically repressed cell mass and translation when glucose was abundant. Surprisingly, inhibition of protein synthesis caused by low glucose levels was partially dampened upon co-treatment with PEM. Moreover, PEM counteracted the elevation of the endoplasmic reticulum stress (ERS) signal produced upon low glucose availability, providing a molecular explanation for the differential impact of the drug on translation according to glucose levels. Collectively, these data indicate that the ERS constitutes a molecular crosstalk between microenvironmental stressors, contributing to translation reprogramming and proteostasis plasticity.

6.
iScience ; 23(6): 101141, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32450513

RESUMEN

Epigenetic deregulation of gene transcription is central to cancer cell plasticity and malignant progression but remains poorly understood. We found that the uncharacterized epigenetic factor chromodomain on Y-like 2 (CDYL2) is commonly over-expressed in breast cancer, and that high CDYL2 levels correlate with poor prognosis. Supporting a functional role for CDYL2 in malignancy, it positively regulated breast cancer cell migration, invasion, stem-like phenotypes, and epithelial-to-mesenchymal transition. CDYL2 regulation of these plasticity-associated processes depended on signaling via p65/NF-κB and STAT3. This, in turn, was downstream of CDYL2 regulation of MIR124 gene transcription. CDYL2 co-immunoprecipitated with G9a/EHMT2 and GLP/EHMT1 and regulated the chromatin enrichment of G9a and EZH2 at MIR124 genes. We propose that CDYL2 contributes to poor prognosis in breast cancer by recruiting G9a and EZH2 to epigenetically repress MIR124 genes, thereby promoting NF-κB and STAT3 signaling, as well as downstream cancer cell plasticity and malignant progression.

7.
Anal Chem ; 92(8): 5890-5896, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32212637

RESUMEN

Studies of the topology, functioning, and regulation of metabolic systems are based on two main types of information that can be measured by mass spectrometry: the (absolute or relative) concentration of metabolites and their isotope incorporation in 13C-labeling experiments. These data are currently obtained from two independent experiments because the 13C-labeled internal standard (IS) used to determine the concentration of a given metabolite overlaps the 13C-mass fractions from which its 13C-isotopologue distribution (CID) is quantified. Here, we developed a generic method with a dedicated processing workflow to obtain these two sets of information simultaneously in a unique sample collected from a single cultivation, thereby reducing by a factor of 2 both the number of cultivations to perform and the number of samples to collect, prepare, and analyze. The proposed approach is based on an IS labeled with other isotope(s) that can be resolved from the 13C-mass fractions of interest. As proof-of-principle, we analyzed amino acids using a doubly labeled 15N13C-cell extract as IS. Extensive evaluation of the proposed approach shows a similar accuracy and precision compared to state-of-the-art approaches. We demonstrate the value of this approach by investigating the dynamic response of amino acids metabolism in mammalian cells upon activation of the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), a key component of the unfolded protein response. Integration of metabolite concentrations and isotopic profiles reveals a reduced de novo biosynthesis of amino acids upon PERK activation. The proposed approach is generic and can be applied to other (micro)organisms, analytical platforms, isotopic tracers, or classes of metabolites.


Asunto(s)
Aminoácidos/análisis , Aminoácidos/metabolismo , Animales , Isótopos de Carbono , Células Cultivadas , Cromatografía Líquida de Alta Presión , Marcaje Isotópico , Espectrometría de Masas , Isótopos de Nitrógeno , Ratas
8.
Cancers (Basel) ; 12(3)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32121537

RESUMEN

Endoplasmic reticulum (ER) stress generates reactive oxygen species (ROS) that induce apoptosis if left unabated. To limit oxidative insults, the ER stress PKR-like endoplasmic reticulum Kinase (PERK) has been reported to phosphorylate and activate nuclear factor erythroid 2-related factor 2 (NRF2). Here, we uncover an alternative mechanism for PERK-mediated NRF2 regulation in human cells that does not require direct phosphorylation. We show that the activation of the PERK pathway rapidly stimulates the expression of NRF2 through activating transcription factor 4 (ATF4). In addition, NRF2 activation is late and largely driven by reactive oxygen species (ROS) generated during late protein synthesis recovery, contributing to protecting against cell death. Thus, PERK-mediated NRF2 activation encompasses a PERK-ATF4-dependent control of NRF2 expression that contributes to the NRF2 protective response engaged during ER stress-induced ROS production.

9.
Biol Cell ; 111(1): 1-17, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30302777

RESUMEN

Tumour cells endure both oncogenic and environmental stresses during cancer progression. Transformed cells must meet increased demands for protein and lipid production needed for rapid proliferation and must adapt to exist in an oxygen- and nutrient-deprived environment. To overcome such challenges, cancer cells exploit intrinsic adaptive mechanisms such as the unfolded protein response (UPR). The UPR is a pro-survival mechanism triggered by accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER), a condition referred to as ER stress. IRE1, PERK and ATF6 are three ER anchored transmembrane receptors. Upon induction of ER stress, they signal in a coordinated fashion to re-establish ER homoeostasis, thus aiding cell survival. Over the past decade, evidence has emerged supporting a role for the UPR in the establishment and progression of several cancers, including breast cancer, prostate cancer and glioblastoma multiforme. This review discusses our current knowledge of the UPR during oncogenesis, tumour growth, metastasis and chemoresistance.


Asunto(s)
Carcinogénesis/metabolismo , Resistencia a Antineoplásicos/fisiología , Estrés del Retículo Endoplásmico/fisiología , Respuesta de Proteína Desplegada/fisiología , Animales , Retículo Endoplásmico/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo
10.
Oncotarget ; 8(13): 20974-20987, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28423496

RESUMEN

mTOR and Unfolded Protein Response (UPR) are two signaling pathways frequently activated in cancer cells. The mTOR pathway has been shown to be up-regulated in most gastroenteropancreatic neuroendocrine tumors. In contrast, little is known about the UPR status in neoplastic neuroendocrine cells. However, these hormone-producing cells are likely to present distinctive adaptations of this pathway, as other secretory cells. We therefore analyzed the status of the three axes of UPR and their relation to mTOR pathway in two gastrointestinal neuroendocrine tumors (GI-NET) cell lines STC-1 and GluTag. At baseline, pharmacological inducers activate the three arms of UPR: PERK, ATF6 and IRE1. Although hypoxia stimulates the PERK, ATF6 and IRE-1 pathways in both cell lines, glucose depletion activates UPR only in STC-1 cell line. Strikingly, P-p70S6K1 increases concomitantly to P-PERK and BiP in response to thapsigargin treatment, glucose depletion or hypoxia. We found that different mTOR inhibitors activate the PERK signaling pathway. To confirm that mTOR inhibition modulates PERK activation, we inhibited PERK and showed that it decreased cell viability when associated to mTOR inhibition, indicating that mTOR drives a PERK-dependent survival pathway. In conclusion, in GI-NET cell lines, UPR signaling is functional and PERK arm is induced by mTOR inhibition. These observations open up new perspectives for therapeutic strategies: the crosstalk between mTOR and UPR might contribute to the resistance to mTOR inhibitors and could be targeted by mTOR and PERK inhibitors in combination therapy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neoplasias Gastrointestinales/patología , Proteínas de Choque Térmico/metabolismo , Tumores Neuroendocrinos/patología , Serina-Treonina Quinasas TOR/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , eIF-2 Quinasa/metabolismo , Apoptosis , Biomarcadores de Tumor/metabolismo , Hipoxia de la Célula , Chaperón BiP del Retículo Endoplásmico , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/metabolismo , Glucosa , Proteínas de Choque Térmico/antagonistas & inhibidores , Humanos , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Células Tumorales Cultivadas , eIF-2 Quinasa/antagonistas & inhibidores
11.
Sci Rep ; 6: 27278, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27255611

RESUMEN

The hexosamine biosynthetic pathway (HBP) is a nutrient-sensing metabolic pathway that produces the activated amino sugar UDP-N-acetylglucosamine, a critical substrate for protein glycosylation. Despite its biological significance, little is known about the regulation of HBP flux during nutrient limitation. Here, we report that amino acid or glucose shortage increase GFAT1 production, the first and rate-limiting enzyme of the HBP. GFAT1 is a transcriptional target of the activating transcription factor 4 (ATF4) induced by the GCN2-eIF2α signalling pathway. The increased production of GFAT1 stimulates HBP flux and results in an increase in O-linked ß-N-acetylglucosamine protein modifications. Taken together, these findings demonstrate that ATF4 provides a link between nutritional stress and the HBP for the regulation of the O-GlcNAcylation-dependent cellular signalling.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Aminoácidos/metabolismo , Glucosa/metabolismo , Hexosaminas/biosíntesis , Proteínas Serina-Treonina Quinasas/metabolismo , Acetilglucosamina/metabolismo , Animales , Vías Biosintéticas , Línea Celular , Células HeLa , Humanos , Ratones , Transferasas de Grupos Nitrogenados/metabolismo , Ratas , Transducción de Señal
12.
Semin Cancer Biol ; 33: 34-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25931390

RESUMEN

Both the hexosamine biosynthetic pathway (HBP) and the endoplasmic reticulum (ER) are considered sensors for the nutritional state of the cell. The former is a branch of the glucose metabolic pathway that provides donor molecules for glycosylation processes, whereas the second requires co-translational N-glycosylation to ensure proper protein folding. It has become clear that the microenvironment of solid tumours, characterised by poor oxygen and nutrient supply, challenges optimal functions of the ER and the HBP. Here, we review recent advances demonstrating that the ER stress (ERS) response and HBP pathways are interconnected to promote cell viability. We then develop the idea that communication between ER and HBP is a survival feature of neoplastic cells that plays a prominent role during tumourigenesis.


Asunto(s)
Estrés del Retículo Endoplásmico , Hexosaminas/metabolismo , Neoplasias/metabolismo , Animales , Carcinogénesis , Linaje de la Célula , Supervivencia Celular , Transformación Celular Neoplásica/metabolismo , Retículo Endoplásmico/metabolismo , Glucosa/metabolismo , Glicosilación , Humanos , Neoplasias/fisiopatología , Pliegue de Proteína , Microambiente Tumoral
13.
Proc Natl Acad Sci U S A ; 111(48): 17254-9, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25404286

RESUMEN

Inflammasomes are caspase-1-activating multiprotein complexes. The mouse nucleotide-binding domain and leucine rich repeat pyrin containing 1b (NLRP1b) inflammasome was identified as the sensor of Bacillus anthracis lethal toxin (LT) in mouse macrophages from sensitive strains such as BALB/c. Upon exposure to LT, the NLRP1b inflammasome activates caspase-1 to produce mature IL-1ß and induce pyroptosis. Both processes are believed to depend on autoproteolysed caspase-1. In contrast to human NLRP1, mouse NLRP1b lacks an N-terminal pyrin domain (PYD), indicating that the assembly of the NLRP1b inflammasome does not require the adaptor apoptosis-associated speck-like protein containing a CARD (ASC). LT-induced NLRP1b inflammasome activation was shown to be impaired upon inhibition of potassium efflux, which is known to play a major role in NLRP3 inflammasome formation and ASC dimerization. We investigated whether NLRP3 and/or ASC were required for caspase-1 activation upon LT stimulation in the BALB/c background. The NLRP1b inflammasome activation was assessed in both macrophages and dendritic cells lacking either ASC or NLRP3. Upon LT treatment, the absence of NLRP3 did not alter the NLRP1b inflammasome activity. Surprisingly, the absence of ASC resulted in IL-1ß cleavage and pyroptosis, despite the absence of caspase-1 autoprocessing activity. By reconstituting caspase-1/caspase-11(-/-) cells with a noncleavable or catalytically inactive mutant version of caspase-1, we directly demonstrated that noncleavable caspase-1 is fully active in response to the NLRP1b activator LT, whereas it is nonfunctional in response to the NLRP3 activator nigericin. Taken together, these results establish variable requirements for caspase-1 cleavage depending on the pathogen and the responding NLR.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Portadoras/metabolismo , Caspasa 1/metabolismo , Inflamasomas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Western Blotting , Proteínas Adaptadoras de Señalización CARD , Proteínas Portadoras/genética , Caspasa 1/genética , Células Cultivadas , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Inflamasomas/genética , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Modelos Biológicos , Proteína con Dominio Pirina 3 de la Familia NLR , Nigericina/farmacología , Proteolisis
14.
J Cell Commun Signal ; 8(4): 311-21, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25354560

RESUMEN

Research over the past few years has highlighted the ability of the unfolded protein response (UPR) to minimize the deleterious effects of accumulated misfolded proteins under both physiological and pathological conditions. The endoplasmic reticulum (ER) adapts to endogenous and exogenous stressors by expanding its protein-folding capacity and by stimulating protective processes such as autophagy and antioxidant responses. Although it is clear that severe ER stress can elicit cell death, several recent studies have shown that low levels of ER stress may actually be beneficial to cells by eliciting an adaptive UPR that 'preconditions' the cell to a subsequent lethal insult; this process is called ER hormesis. The findings have important implications for the treatment of a wide variety of diseases associated with defective proteostasis, including neurodegenerative diseases, diabetes, and cancer. Here, we review the physiological and pathological functions of the ER, with a particular focus on the molecular mechanisms that lead to ER hormesis and cellular protection, and discuss the implications for disease treatment.

15.
Am J Physiol Cell Physiol ; 307(10): C901-7, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25186011

RESUMEN

The endoplasmic reticulum (ER)-induced unfolded protein response (UPR) is an adaptive mechanism that is activated upon accumulation of misfolded proteins in the ER and aims at restoring ER homeostasis. In the past 10 years, the UPR has emerged as an important actor in the different phases of tumor growth. The UPR is transduced by three major ER resident stress sensors, which are protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme-1 (IRE1). The signaling pathways elicited by those stress sensors have connections with metabolic pathways and with other plasma membrane receptor signaling networks. As such, the ER has an essential position as a signal integrator in the cell and is instrumental in the different phases of tumor progression. Herein, we describe and discuss the characteristics of an integrated signaling network that might condition the UPR biological outputs in a tissue- or stress-dependent manner. We discuss these issues in the context of the pathophysiological roles of UPR signaling in cancers.


Asunto(s)
Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Transducción de Señal/fisiología , Respuesta de Proteína Desplegada/fisiología , Animales , Carcinogénesis/patología , Transformación Celular Neoplásica/patología , Humanos
16.
Trends Mol Med ; 20(5): 242-50, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24456621

RESUMEN

The unfolded protein response (UPR) mediates the adaptation of the secretory pathway (SP) to fluctuations in cellular protein demand or to environmental variations. Recently, drug screenings have confirmed the therapeutic potential of targeting the UPR in cancer models. However, the UPR may not be the only druggable target of the SP. Moreover, recent studies have revealed other contributions of the SP to cancer development. This article does not intend to describe the well-established implication of UPR signaling pathways in cancer cell life and cell decision, but rather aims at defining the concept of 'tumor cell secretory addiction', from molecular, cellular, and therapeutic perspectives. Furthermore, the implication of UPR modulations in this context will be discussed.


Asunto(s)
Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas/metabolismo , Vías Secretoras/efectos de los fármacos , Transducción de Señal , Animales , Antineoplásicos/uso terapéutico , Humanos , Neoplasias/genética , Proteínas/antagonistas & inhibidores , Proteínas/genética , Respuesta de Proteína Desplegada/efectos de los fármacos
17.
J Natl Cancer Inst ; 105(13): 937-46, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23766530

RESUMEN

BACKGROUND: MyD88 is an adaptor molecule in Toll-like receptor and interleukin 1 receptor signaling implicated in tumorigenesis through proinflammatory mechanisms. We have recently reported that MyD88 also directly promotes optimal activation of the Ras/Erk pathway. Here we investigate MyD88 implication in the maintenance of the transformation of Ras-dependent tumors. METHODS: RNA interference was used to inhibit MyD88 expression in the colon cancer cell lines HCT116 and LS513. Apoptosis, DNA damage, p53 function, ERCC1 levels, and Ras and inflammatory signaling pathways were analyzed. Using in vitro assays and xenotransplantation in nude mice (five per group), HCT116 tumor growth was assessed following MyD88 knockdown in presence or absence of chemotherapy. RESULTS: MyD88 exerts antiapoptotic functions in colon cancer cells via the Ras/Erk, but not the NF-κB, pathway. MyD88 inhibition leads to defective ERCC1-dependent DNA repair and to accumulation of DNA damage, resulting in cancer cell death via p53. Furthermore, we show that knocking down MyD88 sensitizes cancer cells to genotoxic agents such as platinum salts in vitro and in vivo. Indeed, HCT116 tumor growth following treatment with a combination of suboptimal MyD88 inhibition and suboptimal doses of cisplatin (fold tumor increase = 5.4 ± 1.6) was statistically significantly reduced in comparison to treatment with doxycycline alone (12.4 ± 3.1) or with cisplatin alone (12.5 ± 2.6) (P = .005 for both, one-sided Student t test). CONCLUSIONS: Collectively, these results indicate a novel and original link between inflammation, DNA repair, and cancer, and provide further rationale for MyD88 as a potential therapeutic target in Ras-dependent cancers, in the context of concomitant genotoxic chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Reparación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-1/antagonistas & inhibidores , Receptores de Interleucina-1/metabolismo , Animales , Secuencia de Bases , Western Blotting , Línea Celular Tumoral , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Cisplatino/farmacología , Neoplasias del Colon/metabolismo , Daño del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Doxiciclina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Femenino , Citometría de Flujo , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN Interferente Pequeño/análisis , Receptores de Interleucina-1/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Clin Cancer Res ; 19(13): 3556-66, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23674497

RESUMEN

PURPOSE: Multiple myeloma is a clonal plasma cell disorder in which growth and proliferation are linked to a variety of growth factors, including insulin-like growth factor type I (IGF-I). Bortezomib, the first-in-class proteasome inhibitor, has displayed significant antitumor activity in multiple myeloma. EXPERIMENTAL DESIGN: We analyzed the impact of IGF-I combined with proteasome inhibitors on multiple myeloma cell lines in vivo and in vitro as well as on fresh human myeloma cells. RESULTS: Our study shows that IGF-I enhances the cytotoxic effect of proteasome inhibitors against myeloma cells. The effect of bortezomib on the content of proapoptotic proteins such as Bax, Bad, Bak, and BimS and antiapoptotic proteins such as Bcl-2, Bcl-XL, XIAP, Bfl-1, and survivin was enhanced by IGF-I. The addition of IGF-I to bortezomib had a minor effect on NF-κB signaling in MM.1S cells while strongly enhancing reticulum stress. This resulted in an unfolded protein response (UPR), which was required for the potentiating effect of IGF-I on bortezomib cytotoxicity as shown by siRNA-mediated inhibition of GADD153 expression. CONCLUSIONS: These results suggest that the high baseline level of protein synthesis in myeloma can be exploited therapeutically by combining proteasome inhibitors with IGF-I, which possesses a "priming" effect on myeloma cells for this family of compounds.


Asunto(s)
Resistencia a Antineoplásicos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/farmacología , Mieloma Múltiple/metabolismo , Inhibidores de Proteasoma/farmacología , Animales , Apoptosis/efectos de los fármacos , Ácidos Borónicos/farmacología , Bortezomib , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Humanos , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Factor I del Crecimiento Similar a la Insulina/toxicidad , Mieloma Múltiple/tratamiento farmacológico , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/administración & dosificación , Inhibidores de Proteasoma/toxicidad , Biosíntesis de Proteínas/efectos de los fármacos , Pirazinas/farmacología , Transducción de Señal/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Mol Cell ; 49(6): 1049-59, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23395000

RESUMEN

As solid tumors expand, oxygen and nutrients become limiting owing to inadequate vascularization and diffusion. How malignant cells cope with this potentially lethal metabolic stress remains poorly understood. We found that glucose shortage associated with malignant progression triggers apoptosis through the endoplasmic reticulum (ER) unfolded protein response (UPR). ER stress is in part caused by reduced glucose flux through the hexosamine pathway. Deletion of the proapoptotic UPR effector CHOP in a mouse model of K-ras(G12V)-induced lung cancer increases tumor incidence, strongly supporting the notion that ER stress serves as a barrier to malignancy. Overcoming this barrier requires the selective attenuation of the PERK-CHOP arm of the UPR by the molecular chaperone p58(IPK). Furthermore, p58(IPK)-mediated adaptive response enables cells to benefit from the protective features of chronic UPR. Altogether, these results show that ER stress activation and p58(IPK) expression control the fate of malignant cells facing glucose shortage.


Asunto(s)
Apoptosis , Transformación Celular Neoplásica/metabolismo , Glucosa/deficiencia , Chaperonas Moleculares/fisiología , Factor de Transcripción CHOP/metabolismo , eIF-2 Quinasa/metabolismo , Acetilgalactosamina/metabolismo , Animales , Hipoxia de la Célula , Línea Celular , Proliferación Celular , Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Transportador de Glucosa de Tipo 1/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Ácido Láctico/metabolismo , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas c-ret/metabolismo , Ratas , Respuesta de Proteína Desplegada
20.
Cancer Res ; 72(6): 1449-58, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22271686

RESUMEN

CD44 is a marker of cancer stem-like cells and epithelial-mesenchymal transition that is overexpressed in many cancer types, including thyroid carcinoma. At extracellular and intramembranous domains, CD44 undergoes sequential metalloprotease- and γ-secretase-mediated proteolytic cleavage, releasing the intracellular protein fragment CD44-ICD, which translocates to the nucleus and activates gene transcription. Here, we show that CD44-ICD binds to the transcription factor CREB, increasing S133 phosphorylation and CREB-mediated gene transcription. CD44-ICD enhanced CREB recruitment to the cyclin D1 promoter, promoting cyclin D1 transcription and cell proliferation. Thyroid carcinoma cells harboring activated RET/PTC, RAS, or BRAF oncogenes exhibited CD44 cleavage and CD44-ICD accumulation. Chemical blockade of RET/PTC, BRAF, metalloprotease, or γ-secretase were each sufficient to blunt CD44 processing. Furthermore, thyroid cancer cell proliferation was obstructed by RNA interference-mediated knockdown of CD44 or inhibition of γ-secretase and adoptive CD44-ICD overexpression rescued cell proliferation. Together, these findings reveal a CD44-CREB signaling pathway that is needed to sustain cancer cell proliferation, potentially offering new molecular targets for therapeutic intervention in thyroid carcinoma.


Asunto(s)
Carcinoma Papilar/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Receptores de Hialuranos/metabolismo , Proteolisis , Neoplasias de la Tiroides/patología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Humanos , Metaloproteasas/antagonistas & inhibidores , Metaloproteasas/genética , Oncogenes/efectos de los fármacos , Fosforilación , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Ratas , Transducción de Señal , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...