Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cereb Cortex Commun ; 3(1): tgab066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35088052

RESUMEN

Visual stimulus-induced gamma oscillations in electroencephalogram (EEG) recordings have been recently shown to be compromised in subjects with preclinical Alzheimer's Disease (AD), suggesting that gamma could be an inexpensive biomarker for AD diagnosis provided its characteristics remain consistent across multiple recordings. Previous magnetoencephalography studies in young subjects have reported consistent gamma power over recordings separated by a few weeks to months. Here, we assessed the consistency of stimulus-induced slow (20-35 Hz) and fast gamma (36-66 Hz) oscillations in subjects (n = 40) (age: 50-88 years) in EEG recordings separated by a year, and tested the consistency in the magnitude of gamma power, its temporal evolution and spectral profile. Gamma had distinct spectral/temporal characteristics across subjects, which remained consistent across recordings (average intraclass correlation of ~0.7). Alpha (8-12 Hz) and steady-state-visually evoked-potentials were also reliable. We further tested how EEG features can be used to identify 2 recordings as belonging to the same versus different subjects and found high classifier performance (AUC of ~0.89), with temporal evolution of slow gamma and spectral profile being most informative. These results suggest that EEG gamma oscillations are reliable across sessions separated over long durations and can also be a potential tool for subject identification.

2.
Elife ; 102021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34099103

RESUMEN

Alzheimer's disease (AD) in elderly adds substantially to socioeconomic burden necessitating early diagnosis. While recent studies in rodent models of AD have suggested diagnostic and therapeutic value for gamma rhythms in brain, the same has not been rigorously tested in humans. In this case-control study, we recruited a large population (N = 244; 106 females) of elderly (>49 years) subjects from the community, who viewed large gratings that induced strong gamma oscillations in their electroencephalogram (EEG). These subjects were classified as healthy (N = 227), mild cognitively impaired (MCI; N = 12), or AD (N = 5) based on clinical history and Clinical Dementia Rating scores. Surprisingly, stimulus-induced gamma rhythms, but not alpha or steady-state visually evoked responses, were significantly lower in MCI/AD subjects compared to their age- and gender-matched controls. This reduction was not due to differences in eye movements or baseline power. Our results suggest that gamma could be used as a potential screening tool for MCI/AD in humans.


Alzheimer's disease is one of the most common forms of dementia, characterised by declining memory and thinking skills, and behavioural changes that worsen over time. It affects millions of people worldwide, mostly in older age, and yet early indicators of the disease are lacking. Most cases are only diagnosed once a person's brain function becomes noticeably impaired, even though known biological changes underpin the disease. Detecting Alzheimer's disease early could aid diagnosis and enable early intervention, while also improving the chances of finding treatments to halt or reverse the disease. Currently, brain function is measured by performing cognitive tests, such as remembering a set of words, imaging the brain with MRIs or CT scans, and blood or spinal fluid tests. Many of these tests can be invasive and expensive, so researchers are exploring whether measuring oscillations in the brain's electrical activity can be a non-invasive and chepaer way of testing brain function. Gamma oscillations are rhythmic signals, thought to be involved in attention and working memory. Animals used to study Alzheimer's disease have shown some abnormalities in gamma oscillations, and studies of healthy humans have also observed a decline in the strength and frequency of these oscillations with age. These findings have spurred an interest in understanding the link between gamma oscillations and AD in humans. To investigate this link, Murty et al. measured patterns of brain activity in elderly people chosen from the community using electrodes placed on their scalps (a technique called electroencephalography). These participants watched certain images previously shown to elicit gamma oscillations. Participants who were later diagnosed with early Alzheimer's disease had weaker gamma oscillations than their cognitively healthy peers in the part of the brain that processes visual images. These results build upon previous findings from animal research suggesting that gamma oscillations may be disrupted in early Alzheimer's disease. The work by Murty et al. could lead the way to new ways of diagnosing Alzheimer's disease, where early indicators are urgently needed.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Disfunción Cognitiva/fisiopatología , Ritmo Gamma/fisiología , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Potenciales Evocados Visuales/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad
3.
Neuroimage ; 215: 116826, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32276055

RESUMEN

Gamma rhythms (~20-70 â€‹Hz) are abnormal in mental disorders such as autism and schizophrenia in humans, and Alzheimer's disease (AD) models in rodents. However, the effect of normal aging on these oscillations is unknown, especially for elderly subjects in whom AD is most prevalent. In a first large-scale (236 subjects; 104 females) electroencephalogram (EEG) study on gamma oscillations in elderly subjects (aged 50-88 years), we presented full-screen visual Cartesian gratings that induced two distinct gamma oscillations (slow: 20-34 â€‹Hz and fast: 36-66 â€‹Hz). Power decreased with age for gamma, but not alpha (8-12 â€‹Hz). Reduction was more salient for fast gamma than slow. Center frequency also decreased with age for both gamma rhythms. The results were independent of microsaccades, pupillary reactivity to stimulus, and variations in power spectral density with age. Steady-state visual evoked potentials (SSVEPs) at 32 â€‹Hz also reduced with age. These results are crucial for developing gamma/SSVEP-based biomarkers of cognitive decline in elderly.


Asunto(s)
Envejecimiento/fisiología , Electroencefalografía/tendencias , Potenciales Evocados Visuales/fisiología , Ritmo Gamma/fisiología , Estado de Salud , Corteza Visual/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estimulación Luminosa/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA