Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Structure ; 31(11): 1419-1430.e5, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37708891

RESUMEN

The insertion and folding of proteins into membranes is crucial for cell viability. Yet, the detailed contributions of insertases remain elusive. Here, we monitor how the insertase YidC guides the folding of the polytopic melibiose permease MelB into membranes. In vivo experiments using conditionally depleted E. coli strains show that MelB can insert in the absence of SecYEG if YidC resides in the cytoplasmic membrane. In vitro single-molecule force spectroscopy reveals that the MelB substrate itself forms two folding cores from which structural segments insert stepwise into the membrane. However, misfolding dominates, particularly in structural regions that interface the pseudo-symmetric α-helical domains of MelB. Here, YidC takes an important role in accelerating and chaperoning the stepwise insertion and folding process of both MelB folding cores. Our findings reveal a great flexibility of the chaperoning and insertase activity of YidC in the multifaceted folding processes of complex polytopic membrane proteins.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de la Membrana , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Membrana Celular/metabolismo
2.
Biosensors (Basel) ; 13(9)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37754124

RESUMEN

Cytochrome c (Cytc) is a key redox protein for energy metabolism and apoptosis in cells. The activation of Cytc is composed of several steps, including its transfer to the mitochondrial membrane, binding to cytochrome c heme lyase (CCHL) and covalent attachment to heme. The spectroscopic methods are often applied to study the structural changes of Cytc. However, they require the isolation of Cytc from cells and have limited availability under physiological conditions. Despite recent studies to elucidate the tightly regulated folding mechanism of Cytc, the role of these events and their association with different conformational states remain elusive. Here, we provide a genetically encoded fluorescence method that allows monitoring of the conformational changes of Cytc upon binding to heme and CCHL. Cerulean and Venus fluorescent proteins attached at the N and C terminals of Cytc can be used to determine its unfolded, intermediate, and native states by measuring FRET amplitude. We found that the noncovalent interaction of heme in the absence of CCHL induced a shift in the FRET signal, indicating the formation of a partially folded state. The higher concentration of heme and coexpression of CCHL gave rise to the recovery of Cytc native structure. We also found that Cytc was weakly associated with CCHL in the absence of heme. As a result, a FRET-based fluorescence approach was demonstrated to elucidate the mechanism of heme-induced Cytc conformational changes with spatiotemporal resolution and can be applied to study its interaction with small molecules and other protein partners in living cells.


Asunto(s)
Citocromos c , Colorantes Fluorescentes , Apoptosis , Metabolismo Energético , Hemo
4.
Structure ; 31(1): 58-67.e4, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36525976

RESUMEN

The melibiose permease MelB is a well-studied Na+-coupled transporter of the major facilitator superfamily. However, the symport mechanism of galactosides and cations is still not fully understood, especially at structural levels. Here, we use single-molecule force spectroscopy to investigate substrate-induced structural changes of MelB from Salmonella typhimurium. In the absence of substrate, MelB equally populates two different states, from which one shows higher mechanical structural stability with additional stabilization of the cytoplasmic middle-loop C3. In the presence of either melibiose or a coupling Na+-cation, however, MelB increasingly populates the mechanically less stable state, which shows a destabilized middle-loop C3. In the presence of both substrate and co-substrate, this mechanically less stable state of MelB is predominant. Our findings describe how both substrates guide MelB transporters to populate two different mechanically stabilized states, and contribute mechanistic insights to the alternating-access action for the galactoside/cation symport catalyzed by MelB.


Asunto(s)
Melibiosa , Simportadores , Melibiosa/química , Simportadores/metabolismo , Proteínas de Transporte de Membrana , Sodio/metabolismo , Transporte Iónico , Cationes
5.
Nat Commun ; 13(1): 6195, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271003

RESUMEN

Polymyxins are last-resort antibiotics with potent activity against multi-drug resistant pathogens. They interact with lipopolysaccharide (LPS) in bacterial membranes, but mechanistic details at the molecular level remain unclear. Here, we characterize the interaction of polymyxins with native, LPS-containing outer membrane patches of Escherichia coli by high-resolution atomic force microscopy imaging, along with structural and biochemical assays. We find that polymyxins arrange LPS into hexagonal assemblies to form crystalline structures. Formation of the crystalline structures is correlated with the antibiotic activity, and absent in polymyxin-resistant strains. Crystal lattice parameters alter with variations of the LPS and polymyxin molecules. Quantitative measurements show that the crystalline structures decrease membrane thickness and increase membrane area as well as stiffness. Together, these findings suggest the formation of rigid LPS-polymyxin crystals and subsequent membrane disruption as the mechanism of polymyxin action and provide a benchmark for optimization and de novo design of LPS-targeting antimicrobials.


Asunto(s)
Infecciones por Escherichia coli , Polimixinas , Humanos , Polimixinas/farmacología , Antibacterianos/farmacología , Lipopolisacáridos , Escherichia coli , Polimixina B/farmacología
6.
Structure ; 30(3): 350-359.e3, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34875215

RESUMEN

The ß-barrel assembly machinery (BAM) complex is an essential component of Escherichia coli that inserts and folds outer membrane proteins (OMPs). The natural antibiotic compound darobactin inhibits BamA, the central unit of BAM. Here, we employ dynamic single-molecule force spectroscopy (SMFS) to better understand the structure-function relationship of BamA and its inhibition by darobactin. The five N-terminal polypeptide transport (POTRA) domains show low mechanical, kinetic, and energetic stabilities. In contrast, the structural region linking the POTRA domains to the transmembrane ß-barrel exposes the highest mechanical stiffness and lowest kinetic stability within BamA, thus indicating a mechano-functional role. Within the ß-barrel, the four N-terminal ß-hairpins H1-H4 expose the highest mechanical stabilities and stiffnesses, while the four C-terminal ß-hairpins H5-H6 show lower stabilities and higher flexibilities. This asymmetry within the ß-barrel suggests that substrates funneling into the lateral gate formed by ß-hairpins H1 and H8 can force the flexible C-terminal ß-hairpins to change conformations.


Asunto(s)
Proteínas de Escherichia coli , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Fenilpropionatos , Pliegue de Proteína
7.
Sci Adv ; 5(1): eaau6824, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30801000

RESUMEN

Biogenesis in prokaryotes and eukaryotes requires the insertion of α-helical proteins into cellular membranes for which they use universally conserved cellular machineries. In bacterial inner membranes, insertion is facilitated by YidC insertase and SecYEG translocon working individually or cooperatively. How insertase and translocon fold a polypeptide into the native protein in the membrane is largely unknown. We apply single-molecule force spectroscopy assays to investigate the insertion and folding process of single lactose permease (LacY) precursors assisted by YidC and SecYEG. Both YidC and SecYEG initiate folding of the completely unfolded polypeptide by inserting a single structural segment. YidC then inserts the remaining segments in random order, whereas SecYEG inserts them sequentially. Each type of insertion process proceeds until LacY folding is complete. When YidC and SecYEG cooperate, the folding pathway of the membrane protein is dominated by the translocase. We propose that both of the fundamentally different pathways along which YidC and SecYEG insert and fold a polypeptide are essential components of membrane protein biogenesis.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Pliegue de Proteína , Canales de Translocación SEC/metabolismo , Simportadores/metabolismo , Liposomas/metabolismo , Microscopía de Fuerza Atómica/métodos , Modelos Moleculares , Péptidos/metabolismo , Fosfolípidos/metabolismo , Biosíntesis de Proteínas , Conformación Proteica en Hélice alfa , Transporte de Proteínas
8.
Commun Biol ; 1: 23, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271910

RESUMEN

Most studies characterizing the folding, structure, and function of membrane proteins rely on solubilized or reconstituted samples. Whereas solubilized membrane proteins lack the functionally important lipid membrane, reconstitution embeds them into artificial lipid bilayers, which lack characteristic features of cellular membranes including lipid diversity, composition and asymmetry. Here, we utilize outer membrane vesicles (OMVs) released from Escherichia coli to study outer membrane proteins (Omps) in the native membrane environment. Enriched in the native membrane of the OMV we characterize the assembly, folding, and structure of OmpG, FhuA, Tsx, and BamA. Comparing Omps in OMVs to those reconstituted into artificial lipid membranes, we observe different unfolding pathways for some Omps. This observation highlights the importance of the native membrane environment to maintain the native structure and function relationship of Omps. Our fast and easy approach paves the way for functional and structural studies of Omps in the native membrane.

9.
Chem Commun (Camb) ; 50(82): 12333-6, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25183463

RESUMEN

Photochromic fluorescence resonance energy transfer (pcFRET) was used to monitor the redox activity of non-fluorescent heme protein. Venus fluorescent protein was used as a donor where its emission intensity was reversibly modulated by the absorption change of Cytochrome c.


Asunto(s)
Proteínas Bacterianas/química , Citocromos c/química , Hemoproteínas/química , Proteínas Luminiscentes/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Oxidación-Reducción
10.
Lab Chip ; 14(16): 3093-100, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-24968888

RESUMEN

Fluorescent proteins are indispensable for selective, quantitative visualization of localization, dynamics, and interactions of key molecular constituents of live cells. Incorporation of fluorescent proteins into an optical cavity can lead to a significant increase in fluorescence signal levels due to stimulated emission and light amplification in the cavity, forming a laser with biological gain medium. Utilization of lasing emission from fluorescent biological molecules can then greatly enhance the performance of fluorescence-based biosensors benefiting from the high sensitivity of non-linear lasing processes to small perturbations in the cavity and the gain medium. Here we study optofluidic biolasers that exploit active liquid optical resonators formed by surface-supported aqueous microdroplets containing purified yellow fluorescent protein or a suspension of live E. coli bacterial cells expressing the fluorescent protein. We first demonstrate lasing in fluorescent protein solutions at concentrations as low as 49 µM. Subsequently, we show that a single fluorescent bacterial cell of micrometre size confined in a droplet-based cavity can serve as a laser gain medium. Aqueous droplet microcavities allow the maintenance of the bacterial cells under conditions compatible with unimpeded growth. Therefore, our results also suggest a direct route to microscopic sources of laser light with self-regenerating gain media.


Asunto(s)
Proteínas Bacterianas/análisis , Proteínas Luminiscentes/análisis , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...