Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953159

RESUMEN

The Proline-rich Antimicrobial Peptide (PrAMP) apidaecin (Api) inhibits translation by binding in the ribosomal nascent peptide exit tunnel, trapping release factors RF1 or RF2, and arresting ribosomes at stop codons. To explore the extent of sequence variations of the native 18-amino acid Api that allows it to preserve its activity, we screened a library of synthetic mutant Api genes expressed in bacterial cells, resulting in nearly 350000 peptide variants with multiple substitutions. By applying orthogonal negative and positive selection strategies, we identified a number of multi-substituted Api variants capable of arresting ribosomes at stop codons. Our findings underscore the critical contribution of specific amino acid residues of the peptide for its on-target function while significantly expanding the variety of PrAMPs acting on the terminating ribosome. Additionally, some of the tested synthesized multi-substituted Api variants exhibit improved antibacterial activity compared to that of the wild type PrAMP and may constitute the starting point to develop clinically useful antimicrobials.

2.
Mol Cell ; 84(4): 715-726.e5, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38183984

RESUMEN

Rescuing stalled ribosomes often involves their splitting into subunits. In many bacteria, the resultant large subunits bearing peptidyl-tRNAs are processed by the ribosome-associated quality control (RQC) apparatus that extends the C termini of the incomplete nascent polypeptides with polyalanine tails to facilitate their degradation. Although the tailing mechanism is well established, it is unclear how the nascent polypeptides are cleaved off the tRNAs. We show that peptidyl-tRNA hydrolase (Pth), the known role of which has been to hydrolyze ribosome-free peptidyl-tRNA, acts in concert with RQC factors to release nascent polypeptides from large ribosomal subunits. Dislodging from the ribosomal catalytic center is required for peptidyl-tRNA hydrolysis by Pth. Nascent protein folding may prevent peptidyl-tRNA retraction and interfere with the peptide release. However, oligoalanine tailing makes the peptidyl-tRNA ester bond accessible for Pth-catalyzed hydrolysis. Therefore, the oligoalanine tail serves not only as a degron but also as a facilitator of Pth-catalyzed peptidyl-tRNA hydrolysis.


Asunto(s)
Hidrolasas de Éster Carboxílico , Péptidos , Ribosomas , Ribosomas/metabolismo , Péptidos/genética , Bacterias/genética , Control de Calidad , Biosíntesis de Proteínas
3.
J Med Chem ; 66(17): 11831-11842, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37603874

RESUMEN

With the growing crisis of antimicrobial resistance, it is critical to continue to seek out new sources of novel antibiotics. This need has led to renewed interest in natural product antimicrobials, specifically antimicrobial peptides. Nonlytic antimicrobial peptides are highly promising due to their unique mechanisms of action. One such peptide is apidaecin (Api), which inhibits translation termination through stabilization of the quaternary complex of the ribosome-apidaecin-tRNA-release factor. Synthetic derivatives of apidaecin have been developed, but structure-guided modifications have yet to be considered. In this work, we have focused on modifying key residues in the Api sequence that are responsible for the interactions that stabilize the quaternary complex. We present one of the first examples of a highly modified Api peptide that maintains its antimicrobial activity and interaction with the translation complex. These findings establish a starting point for further structure-guided optimization of Api peptides.


Asunto(s)
Péptidos Antimicrobianos , Productos Biológicos , Péptidos Catiónicos Antimicrobianos/farmacología , Relación Estructura-Actividad , Productos Biológicos/farmacología
4.
Bioorg Med Chem Lett ; 91: 129364, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295615

RESUMEN

Hydrogen-tritium exchange is widely employed for radioisotopic labeling of molecules of biological interest but typically involves the metal-promoted exchange of sp2-hybridized carbon-hydrogen bonds, a strategy that is not directly applicable to the antibiotic iboxamycin, which possesses no such bonds. We show that ruthenium-induced 2'-epimerization of 2'-epi-iboxamycin in HTO (200 mCi) of low specific activity (10 Ci/g, 180 mCi/mmol) at 80 °C for 18 h affords after purification tritium-labeled iboxamycin (3.55 µCi) with a specific activity of 53 mCi/mmol. Iboxamycin displayed an apparent inhibition constant (Ki, app) of 41 ± 30 nM towards Escherichia coli ribosomes, binding approximately 70-fold more tightly than the antibiotic clindamycin (Ki, app = 2.7 ± 1.1 µM).


Asunto(s)
Antibacterianos , Clindamicina , Antibacterianos/química , Clindamicina/química , Clindamicina/metabolismo , Hidrógeno , Tritio/química , Rutenio/química
5.
Nat Chem Biol ; 19(9): 1082-1090, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36997647

RESUMEN

The proline-rich antimicrobial peptide (PrAMP) Drosocin (Dro) from fruit flies shows sequence similarity to other PrAMPs that bind to the ribosome and inhibit protein synthesis by varying mechanisms. The target and mechanism of action of Dro, however, remain unknown. Here we show that Dro arrests ribosomes at stop codons, probably sequestering class 1 release factors associated with the ribosome. This mode of action is comparable to that of apidaecin (Api) from honeybees, making Dro the second member of the type II PrAMP class. Nonetheless, analysis of a comprehensive library of endogenously expressed Dro mutants shows that the interactions of Dro and Api with the target are markedly distinct. While only a few C-terminal amino acids of Api are critical for binding, the interaction of Dro with the ribosome relies on multiple amino acid residues distributed throughout the PrAMP. Single-residue substitutions can substantially enhance the on-target activity of Dro.


Asunto(s)
Péptidos Antimicrobianos , Biosíntesis de Proteínas , Animales , Escherichia coli/metabolismo , Glicopéptidos/química , Drosophila/química , Drosophila/metabolismo
7.
Nat Chem Biol ; 18(11): 1277-1286, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36138139

RESUMEN

Orthosomycin antibiotics inhibit protein synthesis by binding to the large ribosomal subunit in the tRNA accommodation corridor, which is traversed by incoming aminoacyl-tRNAs. Structural and biochemical studies suggested that orthosomycins block accommodation of any aminoacyl-tRNAs in the ribosomal A-site. However, the mode of action of orthosomycins in vivo remained unknown. Here, by carrying out genome-wide analysis of antibiotic action in bacterial cells, we discovered that orthosomycins primarily inhibit the ribosomes engaged in translation of specific amino acid sequences. Our results reveal that the predominant sites of orthosomycin-induced translation arrest are defined by the nature of the incoming aminoacyl-tRNA and likely by the identity of the two C-terminal amino acid residues of the nascent protein. We show that nature exploits this antibiotic-sensing mechanism for directing programmed ribosome stalling within the regulatory open reading frame, which may control expression of an orthosomycin-resistance gene in a variety of bacterial species.


Asunto(s)
Antibacterianos , Ribosomas , Antibacterianos/farmacología , Antibacterianos/metabolismo , Ribosomas/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Secuencia de Aminoácidos , Biosíntesis de Proteínas
8.
Nat Struct Mol Biol ; 29(2): 162-171, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35165456

RESUMEN

The antibiotic linezolid, the first clinically approved member of the oxazolidinone class, inhibits translation of bacterial ribosomes by binding to the peptidyl transferase center. Recent work has demonstrated that linezolid does not inhibit peptide bond formation at all sequences but rather acts in a context-specific manner, namely when alanine occupies the penultimate position of the nascent chain. However, the molecular basis for context-specificity has not been elucidated. Here we show that the second-generation oxazolidinone radezolid also induces stalling with a penultimate alanine, and we determine high-resolution cryo-EM structures of linezolid- and radezolid-stalled ribosome complexes to explain their mechanism of action. These structures reveal that the alanine side chain fits within a small hydrophobic crevice created by oxazolidinone, resulting in improved ribosome binding. Modification of the ribosome by the antibiotic resistance enzyme Cfr disrupts stalling due to repositioning of the modified nucleotide. Together, our findings provide molecular understanding for the context-specificity of oxazolidinones.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Oxazolidinonas/química , Oxazolidinonas/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Alanina/química , Sitios de Unión , Microscopía por Crioelectrón , Linezolid/química , Linezolid/farmacología , Modelos Moleculares , Peptidil Transferasas/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Ribosomas/ultraestructura
9.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35064089

RESUMEN

Kasugamycin (KSG) is an aminoglycoside antibiotic widely used in agriculture and exhibits considerable medical potential. Previous studies suggested that KSG interferes with translation by blocking binding of canonical messenger RNA (mRNA) and initiator transfer tRNA (tRNA) to the small ribosomal subunit, thereby preventing initiation of protein synthesis. Here, by using genome-wide approaches, we show that KSG can interfere with translation even after the formation of the 70S initiation complex on mRNA, as the extent of KSG-mediated translation inhibition correlates with increased occupancy of start codons by 70S ribosomes. Even at saturating concentrations, KSG does not completely abolish translation, allowing for continuing expression of some Escherichia coli proteins. Differential action of KSG significantly depends on the nature of the mRNA residue immediately preceding the start codon, with guanine in this position being the most conducive to inhibition by the drug. In addition, the activity of KSG is attenuated by translational coupling as genes whose start codons overlap with the coding regions or the stop codons of the upstream cistrons tend to be less susceptible to drug-mediated inhibition. Altogether, our findings reveal KSG as an example of a small ribosomal subunit-targeting antibiotic with a well-pronounced context specificity of action.


Asunto(s)
Aminoglicósidos/farmacología , Sitios de Unión , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , ARN Mensajero/genética , Ribosomas/metabolismo , Aminoglicósidos/química , Codón Iniciador , Estructura Molecular , Sistemas de Lectura Abierta , Unión Proteica , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Mensajero/química , ARN Mensajero/metabolismo , Ribosomas/química , Relación Estructura-Actividad
10.
Nature ; 599(7885): 507-512, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707295

RESUMEN

The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern1. For more than five decades, the search for new antibiotics has relied heavily on the chemical modification of natural products (semisynthesis), a method ill-equipped to combat rapidly evolving resistance threats. Semisynthetic modifications are typically of limited scope within polyfunctional antibiotics, usually increase molecular weight, and seldom permit modifications of the underlying scaffold. When properly designed, fully synthetic routes can easily address these shortcomings2. Here we report the structure-guided design and component-based synthesis of a rigid oxepanoproline scaffold which, when linked to the aminooctose residue of clindamycin, produces an antibiotic of exceptional potency and spectrum of activity, which we name iboxamycin. Iboxamycin is effective against ESKAPE pathogens including strains expressing Erm and Cfr ribosomal RNA methyltransferase enzymes, products of genes that confer resistance to all clinically relevant antibiotics targeting the large ribosomal subunit, namely macrolides, lincosamides, phenicols, oxazolidinones, pleuromutilins and streptogramins. X-ray crystallographic studies of iboxamycin in complex with the native bacterial ribosome, as well as with the Erm-methylated ribosome, uncover the structural basis for this enhanced activity, including a displacement of the [Formula: see text] nucleotide upon antibiotic binding. Iboxamycin is orally bioavailable, safe and effective in treating both Gram-positive and Gram-negative bacterial infections in mice, attesting to the capacity for chemical synthesis to provide new antibiotics in an era of increasing resistance.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Antibacterianos/química , Antibacterianos/clasificación , Clindamicina/síntesis química , Clindamicina/farmacología , Descubrimiento de Drogas , Lincomicina/síntesis química , Lincomicina/farmacología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Oxepinas , Piranos , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/química , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Thermus thermophilus/efectos de los fármacos , Thermus thermophilus/enzimología , Thermus thermophilus/genética
11.
Nat Commun ; 12(1): 4466, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294725

RESUMEN

Macrolides and ketolides comprise a family of clinically important antibiotics that inhibit protein synthesis by binding within the exit tunnel of the bacterial ribosome. While these antibiotics are known to interrupt translation at specific sequence motifs, with ketolides predominantly stalling at Arg/Lys-X-Arg/Lys motifs and macrolides displaying a broader specificity, a structural basis for their context-specific action has been lacking. Here, we present structures of ribosomes arrested during the synthesis of an Arg-Leu-Arg sequence by the macrolide erythromycin (ERY) and the ketolide telithromycin (TEL). Together with deep mutagenesis and molecular dynamics simulations, the structures reveal how ERY and TEL interplay with the Arg-Leu-Arg motif to induce translational arrest and illuminate the basis for the less stringent sequence-specific action of ERY over TEL. Because programmed stalling at the Arg/Lys-X-Arg/Lys motifs is used to activate expression of antibiotic resistance genes, our study also provides important insights for future development of improved macrolide antibiotics.


Asunto(s)
Antibacterianos/farmacología , Cetólidos/farmacología , Macrólidos/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Antibacterianos/química , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Sitios de Unión/genética , Microscopía por Crioelectrón , Farmacorresistencia Microbiana/genética , Eritromicina/química , Eritromicina/farmacología , Genes Bacterianos , Cetólidos/química , Cetólidos/farmacocinética , Macrólidos/química , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Insercional , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/química , Ribosomas/efectos de los fármacos
12.
Nat Commun ; 12(1): 2803, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990576

RESUMEN

Macrolide antibiotics bind in the nascent peptide exit tunnel of the bacterial ribosome and prevent polymerization of specific amino acid sequences, selectively inhibiting translation of a subset of proteins. Because preventing translation of individual proteins could be beneficial for the treatment of human diseases, we asked whether macrolides, if bound to the eukaryotic ribosome, would retain their context- and protein-specific action. By introducing a single mutation in rRNA, we rendered yeast Saccharomyces cerevisiae cells sensitive to macrolides. Cryo-EM structural analysis showed that the macrolide telithromycin binds in the tunnel of the engineered eukaryotic ribosome. Genome-wide analysis of cellular translation and biochemical studies demonstrated that the drug inhibits eukaryotic translation by preferentially stalling ribosomes at distinct sequence motifs. Context-specific action markedly depends on the macrolide structure. Eliminating macrolide-arrest motifs from a protein renders its translation macrolide-tolerant. Our data illuminate the prospects of adapting macrolides for protein-selective translation inhibition in eukaryotic cells.


Asunto(s)
Antibacterianos/farmacología , Macrólidos/farmacología , Ribosomas/efectos de los fármacos , Antibacterianos/química , Sitios de Unión , Microscopía por Crioelectrón , Células Eucariotas/efectos de los fármacos , Células Eucariotas/metabolismo , Humanos , Macrólidos/química , Modelos Moleculares , Mutación , Unión Proteica , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/farmacología , ARN de Hongos/genética , ARN Ribosómico/genética , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Relación Estructura-Actividad
13.
Methods Mol Biol ; 2252: 27-55, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33765270

RESUMEN

The knowledge of translation start sites is crucial for annotation of genes in bacterial genomes. However, systematic mapping of start codons in bacterial genes has mainly relied on predictions based on protein conservation and mRNA sequence features which, although useful, are not always accurate. We recently found that the pleuromutilin antibiotic retapamulin (RET) is a specific inhibitor of translation initiation that traps ribosomes specifically at start codons, and we used it in combination with ribosome profiling to map start codons in the Escherichia coli genome. This genome-wide strategy, that was named Ribo-RET, not only verifies the position of start codons in already annotated genes but also enables identification of previously unannotated open reading frames and reveals the presence of internal start sites within genes. Here, we provide a detailed Ribo-RET protocol for E. coli. Ribo-RET can be adapted for mapping the start codons of the protein-coding sequences in a variety of bacterial species.


Asunto(s)
Codón Iniciador , Biología Computacional/métodos , Escherichia coli/genética , Ribosomas/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Codón Iniciador/efectos de los fármacos , Diterpenos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Genoma Bacteriano , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Biosíntesis de Proteínas/efectos de los fármacos
14.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33674389

RESUMEN

Apidaecin (Api), an unmodified 18-amino-acid-long proline-rich antibacterial peptide produced by bees, has been recently described as a specific inhibitor of translation termination. It invades the nascent peptide exit tunnel of the postrelease ribosome and traps the release factors preventing their recycling. Api binds in the exit tunnel in an extended conformation that matches the placement of a nascent polypeptide and establishes multiple contacts with ribosomal RNA (rRNA) and ribosomal proteins. Which of these interactions are critical for Api's activity is unknown. We addressed this problem by analyzing the activity of all possible single-amino-acid substitutions of the Api variants synthesized in the bacterial cell. By conditionally expressing the engineered api gene, we generated Api directly in the bacterial cytosol, thereby bypassing the need for importing the peptide from the medium. The endogenously expressed Api, as well as its N-terminally truncated mutants, retained the antibacterial properties and the mechanism of action of the native peptide. Taking advantage of the Api expression system and next-generation sequencing, we mapped in one experiment all the single-amino-acid substitutions that preserve or alleviate the on-target activity of the Api mutants. Analysis of the inactivating mutations made it possible to define the pharmacophore of Api involved in critical interactions with the ribosome, transfer RNA (tRNA), and release factors. We also identified the Api segment that tolerates a variety of amino acid substitutions; alterations in this segment could be used to improve the pharmacological properties of the antibacterial peptide.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Escherichia coli , Terminación de la Cadena Péptídica Traduccional/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína , Sustitución de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Abejas , Escherichia coli/genética , Escherichia coli/metabolismo , Mutación Missense , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
15.
Nat Chem Biol ; 17(4): 412-420, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33462493

RESUMEN

Many antibiotics inhibit bacterial growth by binding to the ribosome and interfering with protein biosynthesis. Macrolides represent one of the most successful classes of ribosome-targeting antibiotics. The main clinically relevant mechanism of resistance to macrolides is dimethylation of the 23S rRNA nucleotide A2058, located in the drug-binding site, a reaction catalyzed by Erm-type rRNA methyltransferases. Here, we present the crystal structure of the Erm-dimethylated 70S ribosome at 2.4 Å resolution, together with the structures of unmethylated 70S ribosome functional complexes alone or in combination with macrolides. Altogether, our structural data do not support previous models and, instead, suggest a principally new explanation of how A2058 dimethylation confers resistance to macrolides. Moreover, high-resolution structures of two macrolide antibiotics bound to the unmodified ribosome reveal a previously unknown role of the desosamine moiety in drug binding, laying a foundation for the rational knowledge-based design of macrolides that can overcome Erm-mediated resistance.


Asunto(s)
Macrólidos/metabolismo , ARN Ribosómico/ultraestructura , Ribosomas/ultraestructura , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Macrólidos/farmacología , Metilación , ARN Ribosómico/genética , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , ARN Ribosómico 23S/ultraestructura , Ribosomas/genética , Ribosomas/metabolismo
16.
Elife ; 92020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33031031

RESUMEN

Biochemical studies suggested that the antimicrobial peptide apidaecin (Api) inhibits protein synthesis by binding in the nascent peptide exit tunnel and trapping the release factor associated with a terminating ribosome. The mode of Api action in bacterial cells had remained unknown. Here genome-wide analysis reveals that in bacteria, Api arrests translating ribosomes at stop codons and causes pronounced queuing of the trailing ribosomes. By sequestering the available release factors, Api promotes pervasive stop codon bypass, leading to the expression of proteins with C-terminal extensions. Api-mediated translation arrest leads to the futile activation of the ribosome rescue systems. Understanding the unique mechanism of Api action in living cells may facilitate the development of new medicines and research tools for genome exploration.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Codón de Terminación/metabolismo , Escherichia coli/efectos de los fármacos , Genoma Bacteriano/efectos de los fármacos , Terminación de la Cadena Péptídica Traduccional/efectos de los fármacos , Ribosomas/metabolismo , Codón de Terminación/efectos de los fármacos , Escherichia coli/metabolismo , Ribosomas/efectos de los fármacos
17.
Nat Commun ; 11(1): 2900, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32518240

RESUMEN

5S rRNA is an indispensable component of cytoplasmic ribosomes in all species. The functions of 5S rRNA and the reasons for its evolutionary preservation as an independent molecule remain unclear. Here we used ribosome engineering to investigate whether 5S rRNA autonomy is critical for ribosome function and cell survival. By linking circularly permutated 5S rRNA with 23S rRNA we generated a bacterial strain devoid of free 5S rRNA. Viability of the engineered cells demonstrates that autonomous 5S rRNA is dispensable for cell growth under standard conditions and is unlikely to have essential functions outside the ribosome. The fully assembled ribosomes carrying 23S-5S rRNA are highly active in translation. However, the engineered cells accumulate aberrant 50S subunits unable to form stable 70S ribosomes. Cryo-EM analysis revealed a malformed peptidyl transferase center in the misassembled 50S subunits. Our results argue that the autonomy of 5S rRNA is preserved due to its role in ribosome biogenesis.


Asunto(s)
ARN Ribosómico 5S/metabolismo , Ribosomas/metabolismo , Dominio Catalítico , Microscopía por Crioelectrón , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación de la Expresión Génica , Ingeniería Genética , Mutación , Conformación de Ácido Nucleico , Peptidil Transferasas/metabolismo , ARN Bacteriano , ARN Ribosómico 23S/metabolismo , Rec A Recombinasas/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo
18.
Nucleic Acids Res ; 48(15): 8617-8625, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32597957

RESUMEN

Type II toxin-antitoxins systems are widespread in prokaryotic genomes. Typically, they comprise two proteins, a toxin, and an antitoxin, encoded by adjacent genes and forming a complex in which the enzymatic activity of the toxin is inhibited. Under stress conditions, the antitoxin is degraded liberating the active toxin. Though thousands of various toxin-antitoxins pairs have been predicted bioinformatically, only a handful has been thoroughly characterized. Here, we describe the AtaT2 toxin from a toxin-antitoxin system from Escherichia coli O157:H7. We show that AtaT2 is the first GNAT (Gcn5-related N-acetyltransferase) toxin that specifically targets charged glycyl tRNA. In vivo, the AtaT2 activity induces ribosome stalling at all four glycyl codons but does not evoke a stringent response. In vitro, AtaT2 acetylates the aminoacyl moiety of isoaccepting glycyl tRNAs, thus precluding their participation in translation. Our study broadens the known target specificity of GNAT toxins beyond the earlier described isoleucine and formyl methionine tRNAs, and suggest that various GNAT toxins may have evolved to specificaly target other if not all individual aminoacyl tRNAs.


Asunto(s)
Acetiltransferasas/genética , Escherichia coli O157/genética , Glicina-ARNt Ligasa/genética , Biosíntesis de Proteínas/genética , Antitoxinas/genética , Toxinas Bacterianas/genética , Escherichia coli O157/patogenicidad , Sistemas Toxina-Antitoxina/genética
19.
RNA ; 26(10): 1301-1302, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32503919

RESUMEN

In a recently published paper, Huang and coworkers claim that proteins translated in different reading frames from the same mRNA can have similar functions. This conclusion is possibly incorrect due to the possibility that the wild-type protein could still be expressed.


Asunto(s)
Proteínas , ARN Mensajero , Sistemas de Lectura
20.
Nat Commun ; 11(1): 1858, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32313034

RESUMEN

Ribosome engineering is a powerful approach for expanding the catalytic potential of the protein synthesis apparatus. Due to the potential detriment the properties of the engineered ribosome may have on the cell, the designer ribosome needs to be functionally isolated from the translation machinery synthesizing cellular proteins. One solution to this problem was offered by Ribo-T, an engineered ribosome with tethered subunits which, while producing a desired protein, could be excluded from general translation. Here, we provide a conceptually different design of a cell with two orthogonal protein synthesis systems, where Ribo-T produces the proteome, while the dissociable ribosome is committed to the translation of a specific mRNA. The utility of this system is illustrated by generating a comprehensive collection of mutants with alterations at every rRNA nucleotide of the peptidyl transferase center and isolating gain-of-function variants that enable the ribosome to overcome the translation termination blockage imposed by an arrest peptide.


Asunto(s)
Bacterias/metabolismo , Ingeniería de Proteínas/métodos , Ribosomas/química , Biología Sintética/métodos , Alelos , Sistema Libre de Células , Cristalografía por Rayos X , Modelos Moleculares , Modelos Teóricos , Conformación Molecular , Mutación , Péptidos/química , Peptidil Transferasas/química , Plásmidos/genética , Biosíntesis de Proteínas , Proteoma , ARN Mensajero/genética , ARN Ribosómico/genética , ARN Ribosómico 23S/genética , Thermus thermophilus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...