Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (186)2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36121282

RESUMEN

Progressive resistance training (PRT), which involves performing muscle contractions against progressively greater external loads, can increase muscle mass and strength in healthy individuals and in patient populations. There is a need for precision rehabilitation tools to test the safety and effectiveness of PRT to maintain and/or restore muscle mass and strength in preclinical studies on small and large animal models. The PRT methodology and device described in this article can be used to perform dosage-adjusted resistance training (DART). The DART device can be used as a standalone dynamometer to objectively assess the concentric contractile torque generated by the ankle dorsiflexors in mice or can be added to a pre-existing isokinetic dynamometry system. The DART device can be fabricated with a standard 3D printer based on the instructions and open-source 3D print files provided in this work. The article also describes the workflow for a study to compare contraction-induced muscle damage caused by a single bout of DART to muscle damage caused by a comparable bout of isometric contractions (ISOM) in a mouse model of limb-girdle muscular dystrophy type 2B/R2 (BLAJ mice). The data from eight BLAJ mice (four animals for each condition) suggest that less than 10% of the tibialis anterior (TA) muscle was damaged from a single bout of DART or ISOM, with DART being less damaging than ISOM.


Asunto(s)
Entrenamiento de Fuerza , Animales , Humanos , Contracción Isométrica/fisiología , Ratones , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Torque
2.
Am J Pathol ; 190(10): 2039-2055, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32650005

RESUMEN

This study investigated intercellular adhesion molecule-1 (ICAM-1), a membrane protein that mediates cell-to-cell adhesion and communication, as a mechanism through which the inflammatory response facilitates muscle regeneration after injury. Toxin-induced muscle injury to tibialis anterior muscles of wild-type mice caused ICAM-1 to be expressed by a population of satellite cells/myoblasts and myofibers. Myogenic cell expression of ICAM-1 contributed to the restoration of muscle structure after injury, as regenerating myofibers were more abundant and myofiber size was larger for wild-type compared with Icam1-/- mice during 28 days of recovery. Contrastingly, restoration of muscle function after injury was similar between the genotypes. ICAM-1 facilitated the restoration of muscle structure after injury through mechanisms involving the regulation of myofiber branching, protein synthesis, and the organization of nuclei within myofibers after myogenic cell fusion. These findings provide support for a paradigm in which ICAM-1 expressed by myogenic cells after muscle injury augments their adhesive and fusogenic properties, which, in turn, facilitates regenerative and hypertrophic processes that restore structure to injured muscle.


Asunto(s)
Adhesión Celular/fisiología , Molécula 1 de Adhesión Intercelular/metabolismo , Desarrollo de Músculos/fisiología , Células Satélite del Músculo Esquelético/metabolismo , Animales , Comunicación Celular/fisiología , Femenino , Hipertrofia/metabolismo , Masculino , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Regeneración/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...