Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Phys Chem Chem Phys ; 24(10): 6133-6145, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35225299

RESUMEN

We have utilized photoluminescence spectroscopy and optical ellipsometry to characterize the dose-dependence of the photoluminescence emission intensity and changes in optical absorption of thoria single crystals subject to irradiation with energetic protons at room- and elevated-temperatures. The photoluminescence peaks and the optical absorption bands are attributed to creation of new electronic states emerging from defects resulting from displacement damage. These bands are most likely associated with electrons trapped at the oxygen vacancy sites similar to color centers formed in other irradiated oxides and halides. Our experimental observations are supported by a standard density functional theory calculation of the electronic structure in pristine and oxygen vacancy-bearing thoria crystals. The dose-dependence of the intensity of the photoluminescence peaks is used to parameterize a rate theory model that estimates the concentration of color centers in the irradiated crystals. This parameterization provides optimized migration barrier parameters for oxygen interstitials and vacancies that simultaneously capture the optical response of the crystals irradiated at room- and elevated-temperature. These optical spectroscopy techniques offer a promising pathway to characterize the population of color centers formed at the sites of oxygen anion vacancies, particularly in irradiated nuclear fuels, where atomic-level defects cannot be readily imaged using electron microscopy. When combined with other direct and indirect characterization tools, our approach can provide new insight into defect formation and accumulation in energy materials over single atomic to extended length scales.

3.
Chem Rev ; 122(3): 3711-3762, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-34919381

RESUMEN

To efficiently capture the energy of the nuclear bond, advanced nuclear reactor concepts seek solid fuels that must withstand unprecedented temperature and radiation extremes. In these advanced fuels, thermal energy transport under irradiation is directly related to reactor performance as well as reactor safety. The science of thermal transport in nuclear fuel is a grand challenge as a result of both computational and experimental complexities. Here we provide a comprehensive review of thermal transport research on two actinide oxides: one currently in use in commercial nuclear reactors, uranium dioxide (UO2), and one advanced fuel candidate material, thorium dioxide (ThO2). In both materials, heat is carried by lattice waves or phonons. Crystalline defects caused by fission events effectively scatter phonons and lead to a degradation in fuel performance over time. Bolstered by new computational and experimental tools, researchers are now developing the foundational work necessary to accurately model and ultimately control thermal transport in advanced nuclear fuels. We begin by reviewing research aimed at understanding thermal transport in perfect single crystals. The absence of defects enables studies that focus on the fundamental aspects of phonon transport. Next, we review research that targets defect generation and evolution. Here the focus is on ion irradiation studies used as surrogates for damage caused by fission products. We end this review with a discussion of modeling and experimental efforts directed at predicting and validating mesoscale thermal transport in the presence of irradiation defects. While efforts in these research areas have been robust, challenging work remains in developing holistic tools to capture and predict thermal energy transport across widely varying environmental conditions.

4.
Ultramicroscopy ; 220: 113167, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33197698

RESUMEN

Atom probe tomography (APT), a 3D microscopy technique, has great potential to reveal atomic scale compositional variations, such as those associated with irradiation damage. However, obtaining accurate compositional quantification by APT for high bandgap materials is a longstanding challenge, given the sensitivity to field evaporation parameters and inconsistent behaviors across different oxides. This study investigates the influence of APT laser energy and specimen base temperature on compositional accuracy in single crystal thoria (ThO2). ThO2 has a broad range of applications, including advanced nuclear fuels, sensors, lasers and scintillators, electrodes, catalysis, and photonics and optoelectronics. The expected stoichiometry of ThO2 is achieved at APT base temperature of 24 K and laser energy of 100 pJ. To overcome mass resolution limitations associated with significant thermal tails, Bayesian methods are applied to deconvolute ion identity within the mass spectra. This approach affirms that the parameters chosen are appropriate for APT analysis of ThO2.

5.
J Phys Condens Matter ; 29(3): 035005, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-27869637

RESUMEN

The effective Debye temperatures ([Formula: see text]) of the surface region of UO2 single crystals, prepared by the hydrothermal synthesis technique, were obtained from temperature-dependent x-ray photoemission in the temperature range of 300 K-623 K. A lattice stiffening transition, characterized by different regions of different effective Debye temperature, 500 ± 59 K below 475 K and 165 ± 21 K above 475 K is identified. A comparison of the temperature dependence of the effective UO2 Debye temperature, with the changes in the lattice expansion coefficient for UO2, support strong lattice-phonon interaction arising from the Jahn-Teller distortion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...