Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Photodiagnosis Photodyn Ther ; 46: 104094, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38642728

RESUMEN

OBJECTIVE: Oral cancer is a leading cause of mortality globally, particularly affecting developing regions where oral hygiene is often overlooked. The optical properties of tissues are vital for diagnostics, with polarization imaging emerging as a label-free, contrast-enhancing technique widely employed in medical and scientific research over past few decades. MATERIALS AND METHODS: We present a novel polarization sensitive quantitative phase imaging of biological tissues by incorporating the conventional polarization microscope and transport of intensity equation-based phase retrieval algorithm. This integration provides access to the birefringence mapping of biological tissues. The inherent optical anisotropy in biological tissues induces the polarization dependent refractive index variations which can provide the detailed insights into the birefringence characteristics of their extracellular constituents. Experimental investigations were conducted on both normal and cancerous oral tissue samples by recording a set of three polarization intensity images for each case with a step size of 2 µm. RESULTS: A noteworthy increment in birefringence quantification was observed in cancerous as compared to the normal tissues, attributed to the proliferation of abnormal cells during cancer progression. The mean birefringence values were calculated for both normal and cancerous tissues, revealing a significant increase in birefringence of cancerous tissues (2.1 ± 0.2) × 10-2 compared to normal tissues (0.8 ± 0.2) × 10-2. Data were collected from 8 patients in each group under identical experimental conditions. CONCLUSION: This polarization sensitive non-interferometric optical approach demonstrated effective discrimination between cancerous and normal tissues, with various parameters indicating elevated values in cancerous tissues.


Asunto(s)
Microscopía de Polarización , Neoplasias de la Boca , Birrefringencia , Humanos , Microscopía de Polarización/métodos , Neoplasias de la Boca/diagnóstico por imagen , Algoritmos , Refractometría/métodos , Imágenes de Fase Cuantitativa
2.
J Biophotonics ; 17(2): e202300236, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37789505

RESUMEN

Many optical techniques have been used in various diagnostics and biomedical applications since a decade and polarization imaging is one of the non-invasive and label free optical technique to investigate biological samples making it an important tool in diagnostics, biomedical applications. We report a multispectral polarization-based imaging of oral tissue by utilizing a polarization microscope system with a broadband-light source. Experiments were performed on oral tissue samples and multispectral Stokes mapping was done by recording a set of intensity images. Polarization-based parameters like degree of polarization, angle of fast axis, retardation and linear birefringence have been retrieved. The statistical moments of these polarization components have also been reported at multiples wavelengths. The polarimetric properties of oral tissue at different stages of cancer have been analyzed and significant changes from normal to pre-cancerous lesions to the cancerous are observed in linear birefringence quantification as (1.7 ± 0.1) × 10-3 , (2.5 ± 0.2) × 10-3 and (3.3 ± 0.2) × 10-3 respectively.


Asunto(s)
Diagnóstico por Imagen , Humanos , Microscopía de Polarización/métodos , Birrefringencia , Análisis Espectral
3.
J Biophotonics ; 15(7): e202100386, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35373920

RESUMEN

In this paper, we demonstrate the white light phase shifting interferometer employed as whole slide scanner and phase profiler for determining qualitative and quantitative information over large field-of-view (FOV). Experiments were performed on human erythrocytes and MG63 Osteosarcoma cells. Here, we have recorded microscopic images and phase shifted white light interferograms simultaneously in a stepped manner. Sample slide is translated in transverse direction such that there exists a correlation between the adjacent frames, and they were stitched together using correlation functions. Final stitched image has a FOV of 0.24 × 1.14 mm with high resolution ~0.8 µm. Circular Hough transform algorithm is implemented to the resulting image for cell counting and five-step phase shifting algorithm is utilised to retrieve the phase profiles over a large FOV. Further, this technique is utilised to study the difference between normal and anaemic erythrocytes. Significant changes are observed in anaemic cells as compared to normal cells.


Asunto(s)
Interferometría , Microscopía , Algoritmos , Diseño de Equipo , Humanos , Luz , Microscopía/métodos
4.
J Biophotonics ; 15(6): e202100284, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34978385

RESUMEN

Multimodality of an optical system implies the use of one or more optical techniques to improve the system's overall performance and maximum utility. In this article, we demonstrate a multimodal system with oblique illumination that combines two different techniques; fluorescence micro-endoscopy and spectroscopy simultaneously and can be utilized to obtain diverse information from the same location of biological sample. In present system, use of graded index (GRIN) rod-lens makes it highly compact and oblique incidence decouples illumination geometry with collection geometry, preventing CCD cameras from saturation and reduces number of optical elements, thereby making system further miniaturized and field-portable. It also overcomes the disadvantages of undesired reflections from different optical elements. The experimental results of simultaneous imaging and spectroscopy of the biological samples are presented along with quantitative spectroscopic parameters; peak wavelength shift, area under the curve and full width half maximum (FWHM). The spatial resolution, spectral resolution and field of view of the system are found to be 4.38 µm, 0.5 nm and 2.071×1.548mm2 , respectively. Furthermore, we have obtained the red shift for cancerous oral tissue with respect to normal oral tissue 5.79 ± 1.071 nm. This could be important indicator for oral cancer screening.


Asunto(s)
Iluminación , Neoplasias de la Boca , Endoscopía/métodos , Humanos , Neoplasias de la Boca/diagnóstico por imagen , Imagen Óptica/métodos , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA