Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(9): 623, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736741

RESUMEN

Oncogene Moesin plays critical role in initiation, progression, and metastasis of multiple cancers. It exerts oncogenic activity due to its high-level expression as well as posttranslational modification in cancer. However, factors responsible for its high-level expression remain elusive. In this study, we identified positive as well as negative regulators of Moesin. Our study reveals that Moesin is a cellular target of F-box protein FBXW2. We showed that FBXW2 suppresses breast cancer progression through directing proteasomal degradation of Moesin. In contrast, AKT kinase plays an important role in oncogenic function of Moesin by protecting it from FBXW2-mediated proteasomal degradation. Mechanistically, AKT phosphorylates Moesin at Thr-558 and thereby prevents its degradation by FBXW2 via weakening the association between FBXW2 and Moesin. Further, accumulated Moesin prevents FBXW2-mediated degradation of oncogene SKP2, showing that Moesin functions as an upstream regulator of oncogene SKP2. In turn, SKP2 stabilizes Moesin by directing its non-degradable form of polyubiquitination and therefore AKT-Moesin-SKP2 oncogenic axis plays crucial role in breast cancer progression. Collectively, our study reveals that FBXW2 functions as a tumor suppressor in breast cancer by restricting AKT-Moesin-SKP2 axis. Thus, AKT-Moesin-SKP2 axis may be explored for the development of therapeutics for cancer treatment.


Asunto(s)
Neoplasias de la Mama , Proteínas F-Box , Proteínas Proto-Oncogénicas c-akt , Humanos , Transformación Celular Neoplásica , Proteínas F-Box/genética , Proteínas de Microfilamentos , Oncogenes , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología
2.
Cell Metab ; 35(10): 1782-1798.e8, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37586363

RESUMEN

Glucose metabolism is known to orchestrate oncogenesis. Whether glucose serves as a signaling molecule directly regulating oncoprotein activity for tumorigenesis remains elusive. Here, we report that glucose is a cofactor binding to methyltransferase NSUN2 at amino acid 1-28 to promote NSUN2 oligomerization and activation. NSUN2 activation maintains global m5C RNA methylation, including TREX2, and stabilizes TREX2 to restrict cytosolic dsDNA accumulation and cGAS/STING activation for promoting tumorigenesis and anti-PD-L1 immunotherapy resistance. An NSUN2 mutant defective in glucose binding or disrupting glucose/NSUN2 interaction abolishes NSUN2 activity and TREX2 induction leading to cGAS/STING activation for oncogenic suppression. Strikingly, genetic deletion of the glucose/NSUN2/TREX2 axis suppresses tumorigenesis and overcomes anti-PD-L1 immunotherapy resistance in those cold tumors through cGAS/STING activation to facilitate apoptosis and CD8+ T cell infiltration. Our study identifies NSUN2 as a direct glucose sensor whose activation by glucose drives tumorigenesis and immunotherapy resistance by maintaining TREX2 expression for cGAS/STING inactivation.


Asunto(s)
Nucleotidiltransferasas , Transducción de Señal , Humanos , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal/genética , Carcinogénesis , Inmunoterapia , Metiltransferasas/metabolismo
4.
STAR Protoc ; 4(1): 101940, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36520628

RESUMEN

Here, we present optimized approaches to identify the efficiency of cancer cell phagocytosis by macrophages in vitro and in vivo. We describe the preparation and co-culture of macrophages and cancer cells, followed by in vitro phagocytosis assay using flow cytometry and confocal microscopy, respectively. We then detail the establishment of xenograft tumor mouse model and the in vivo detecting of phagocytosis efficiency by flow cytometry and qRT-PCR. This protocol provides a convenient way to assess macrophage-mediated phagocytosis of cancer cells. For complete details on the use and execution of this protocol, please refer to Xu et al.1.


Asunto(s)
Citofagocitosis , Neoplasias , Humanos , Animales , Ratones , Fagocitosis , Macrófagos , Técnicas de Cocultivo , Modelos Animales de Enfermedad
5.
Semin Cancer Biol ; 86(Pt 3): 1158-1174, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36244530

RESUMEN

Metabolic reprogramming is an important cancer hallmark that plays a key role in cancer malignancies and therapy resistance. Cancer cells reprogram the metabolic pathways to generate not only energy and building blocks but also produce numerous key signaling metabolites to impact signaling and epigenetic/transcriptional regulation for cancer cell proliferation and survival. A deeper understanding of the mechanisms by which metabolic reprogramming is regulated in cancer may provide potential new strategies for cancer targeting. Recent studies suggest that deregulated transcription factors have been observed in various human cancers and significantly impact metabolism and signaling in cancer. In this review, we highlight the key transcription factors that are involved in metabolic control, dissect the crosstalk between signaling and transcription factors in metabolic reprogramming, and offer therapeutic strategies targeting deregulated transcription factors for cancer treatment.


Asunto(s)
Neoplasias , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias/patología , Redes y Vías Metabólicas
6.
J Biomed Sci ; 29(1): 76, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36180910

RESUMEN

Growth factor signaling plays a pivotal role in diverse biological functions, such as cell growth, apoptosis, senescence, and migration and its deregulation has been linked to various human diseases. Akt kinase is a central player transmitting extracellular clues to various cellular compartments, in turn executing these biological processes. Since the discovery of Akt three decades ago, the tremendous progress towards identifying its upstream regulators and downstream effectors and its roles in cancer has been made, offering novel paradigms and therapeutic strategies for targeting human diseases and cancers with deregulated Akt activation. Unraveling the molecular mechanisms for Akt signaling networks paves the way for developing selective inhibitors targeting Akt and its signaling regulation for the management of human diseases including cancer.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas c-akt , Apoptosis , Humanos , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Transductores
7.
J Clin Invest ; 132(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35229723

RESUMEN

Cancer stem-like cells (CSLCs) acquire enhanced immune checkpoint responses to evade immune cell killing and promote tumor progression. Here we showed that signal regulatory protein γ (SIRPγ) determined CSLC properties and immune evasiveness in a small population of lung adenocarcinoma (LUAD) cancer cells. A SIRPγhi population displayed CSLC properties and transmitted the immune escape signal through sustaining CD47 expression in both SIRPγhi and SIRPγlo/- tumor cells. SIRPγ bridged MST1 and PP2A to facilitate MST1 dephosphorylation, resulting in Hippo/YAP activation and leading to cytokine release by CSLCs, which stimulated CD47 expression in LUAD cells and consequently inhibited tumor cell phagocytosis. SIRPγ promoted tumor growth and metastasis in vivo through YAP signaling. Notably, SIRPγ targeting with genetic SIRPγ knockdown or a SIRPγ-neutralizing antibody inhibited CSLC phenotypes and elicited phagocytosis that suppressed tumor growth in vivo. SIRPG was upregulated in human LUAD and its overexpression predicted poor survival outcome. Thus, SIRPγhi cells serve as CSLCs and tumor immune checkpoint-initiating cells, propagating the immune escape signal to the entire cancer cell population. Our study identifies Hippo/YAP signaling as the first mechanism by which SIRPγ is engaged and reveals that targeting SIRPγ represents an immune- and CSLC-targeting strategy for lung cancer therapy.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/metabolismo , Antígeno CD47/genética , Antígeno CD47/metabolismo , Línea Celular Tumoral , Vía de Señalización Hippo , Humanos , Neoplasias Pulmonares/genética , Transducción de Señal
8.
Toxicol Appl Pharmacol ; 441: 115973, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35278439

RESUMEN

Arsenic trioxide (ATO), a potent anti-neoplastic drug, is known to prevent cancer cell growth through induction of autophagic cell death. However, importance of cellular factors in ATO-mediated autophagic cell death is poorly understood. In this study, using biochemical and immunofluorescence techniques, we show that F-box protein FBXO41 plays a critical role in anti-proliferative activity of ATO. Our study reveals the importance of FBXO41 in induction of autophagic death of cancer cells by ATO. Further, we show that the autophagic cell death induced by FBXO41 is distinct and independent of apoptosis and necrosis, showing that FBXO41 may play vital role in inducing autophagic death of apoptosis resistant cancer cells. Overall, our study elucidates the importance of FBXO41 in ATO induced autophagic cell death to prevent cancer progression, which could be explored to develop promising cancer therapeutic strategy.


Asunto(s)
Antineoplásicos , Arsenicales , Muerte Celular Autofágica , Proteínas F-Box , Neoplasias , Antineoplásicos/farmacología , Apoptosis , Trióxido de Arsénico/farmacología , Arsenicales/farmacología , Línea Celular Tumoral , Humanos , Neoplasias/tratamiento farmacológico , Óxidos/farmacología
9.
Mol Cell ; 81(18): 3803-3819.e7, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34547240

RESUMEN

Mitochondrial dynamics regulated by mitochondrial fusion and fission maintain mitochondrial functions, whose alterations underline various human diseases. Here, we show that inositol is a critical metabolite directly restricting AMPK-dependent mitochondrial fission independently of its classical mode as a precursor for phosphoinositide generation. Inositol decline by IMPA1/2 deficiency elicits AMPK activation and mitochondrial fission without affecting ATP level, whereas inositol accumulation prevents AMPK-dependent mitochondrial fission. Metabolic stress or mitochondrial damage causes inositol decline in cells and mice to elicit AMPK-dependent mitochondrial fission. Inositol directly binds to AMPKγ and competes with AMP for AMPKγ binding, leading to restriction of AMPK activation and mitochondrial fission. Our study suggests that the AMP/inositol ratio is a critical determinant for AMPK activation and establishes a model in which AMPK activation requires inositol decline to release AMPKγ for AMP binding. Hence, AMPK is an inositol sensor, whose inactivation by inositol serves as a mechanism to restrict mitochondrial fission.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Inositol/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Quinasas Activadas por AMP/fisiología , Animales , Línea Celular , Humanos , Inositol/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Células PC-3 , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Estrés Fisiológico/fisiología
10.
J Biol Chem ; 297(4): 101253, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34587475

RESUMEN

Apoptosis is a programmed cell death that efficiently removes damaged cells to maintain tissue homeostasis. Defect in apoptotic machinery can lead to tumor development, progression, and resistance to chemotherapy. PUMA (p53 upregulated modulator of apoptosis) and BAX (BCL2-associated X protein) are among the most well-known inducers of apoptosis. It has been reported that expression levels of BAX and PUMA are controlled at the posttranslational level by phosphorylation. However, the posttranslational regulation of these proapoptotic proteins remains largely unexplored. In this study, using biochemical, molecular biology, flow cytometric, and immunohistochemistry techniques, we show that PUMA and BAX are the direct target of the F-box protein FBXL20, which restricts their cellular levels. FBXL20 directs the proteasomal degradation of PUMA and BAX in a protein kinase AKT1-dependent manner to promote cancer cell proliferation and tumor growth. Interestingly, inactivation of AKT1 results in activation of another protein kinase GSK3α/ß, which facilitates the proteasomal degradation of FBXL20 by another F-box protein, FBXO31. Thus, a switch between two signaling kinases AKT1 and GSK3α/ß modulates the functional activity of these proapoptotic regulators, thereby determining cell survival or death. RNAi-mediated ablation of FBXL20 results in increased levels of PUMA as well as BAX, which further enhances the sensitivity of cancer cells to chemotherapeutic drugs. We showed that high level expression of FBXL20 in cancer cells reduces therapeutic drug-induced apoptosis and promotes chemoresistance. Overall, this study highlights the importance of targeting FBXL20 in cancers in conjunction with chemotherapy and may represent a promising anticancer strategy to overcome chemoresistance.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Neoplasias de la Mama/metabolismo , Proteínas F-Box/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Proteínas F-Box/genética , Femenino , Células HEK293 , Humanos , Células MCF-7 , Proteínas Proto-Oncogénicas/genética , Proteína X Asociada a bcl-2/genética
11.
J Pathol ; 248(3): 266-279, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30714168

RESUMEN

Aberrant activation of ß-catenin has been implicated in a variety of human diseases, including cancer. In spite of significant progress, the regulation of active Wnt/ß-catenin-signaling pathways is still poorly understood. In this study, we show that F-box protein 16 (FBXO16) is a putative tumor suppressor. It is a component of the SCF (SKP1-Cullin1-F-box protein) complex, which targets the nuclear ß-catenin protein to facilitate proteasomal degradation through the 26S proteasome. FBXO16 interacts physically with the C-terminal domain of ß-catenin and promotes its lysine 48-linked polyubiquitination. In addition, it inhibits epithelial-to-mesenchymal transition (EMT) by attenuating the level of ß-catenin. Therefore, depletion of FBXO16 leads to increased levels of ß-catenin, which then promotes cell invasion, tumor growth, and EMT of cancer cells. Furthermore, FBXO16 and ß-catenin share an inverse correlation of cellular expression in clinical breast cancer patient samples. In summary, we propose that FBXO16 functions as a putative tumor suppressor by forming an SCFFBXO16 complex that targets nuclear ß-catenin in a unique manner for ubiquitination and subsequent proteasomal degradation to prevent malignancy. This work suggests a novel therapeutic strategy against human cancers related to aberrant ß-catenin activation. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Proteínas F-Box/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , beta Catenina/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Transición Epitelial-Mesenquimal/genética , Genes Supresores de Tumor/fisiología , Humanos , Proteínas Nucleares/metabolismo , Vía de Señalización Wnt/fisiología
12.
Neoplasia ; 19(6): 483-495, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28500896

RESUMEN

The transformation of a normal cell to cancer requires the derail of multiple pathways. Normal signaling in a cell is regulated at multiple stages by the presence of feedback loops, calibration of levels of proteins by their regulated turnover, and posttranscriptional regulation, to name a few. The tumor suppressor protein FBXO31 is a component of the SCF E3 ubiquitin ligase and is required to arrest cells at G1 following genotoxic stresses. Due to its growth-suppression activity, it is underexpressed in many cancers. However, the molecular mechanism underlying the translational regulation of FBXO31 remains unclear. Here we show that the oncogenic microRNAs miR-93 and miR-106a repress FBXO31, resulting in the upregulation of Slug, which is involved in epithelial-mesenchymal transition and cell invasion. FBXO31 targets and ubiquitylates Slug for proteasomal degradation. However, this mechanism is repressed in breast tumors where miR-93 and miR-106a are overexpressed. Our study further unravels an interesting mechanism whereby Slug drives the expression of miR-93 and miR-106a, thus establishing a positive feedback loop to maintain an invasive phenotype. Together, these results establish the presence of interplay between microRNAs and the ubiquitination machinery, which together regulate cancer cell invasion.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas F-Box/genética , MicroARNs/genética , Invasividad Neoplásica/genética , Factores de Transcripción de la Familia Snail/genética , Proteínas Supresoras de Tumor/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Invasividad Neoplásica/patología , Transducción de Señal , Ubiquitinación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...