Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 183, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360932

RESUMEN

Autophagy, the process of elimination of cellular components by lysosomal degradation, is essential for animal development and homeostasis. Using the autophagy-dependent Drosophila larval midgut degradation model we identified an autophagy regulator, the RING domain ubiquitin ligase CG14435 (detour). Depletion of detour resulted in increased early-stage autophagic vesicles, premature tissue contraction, and overexpression of detour or mammalian homologues, ZNRF1 and ZNRF2, increased autophagic vesicle size. The ablation of ZNRF1 or ZNRF2 in mammalian cells increased basal autophagy. We identified detour interacting proteins including HOPS subunits, deep orange (dor/VPS18), Vacuolar protein sorting 16A (VPS16A), and light (lt/VPS41) and found that detour promotes their ubiquitination. The detour mutant accumulated autophagy-related proteins in young adults, displayed premature ageing, impaired motor function, and activation of innate immunity. Collectively, our findings suggest a role for detour in autophagy, likely through regulation of HOPS complex, with implications for healthy aging.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Transporte de Proteínas , Ubiquitinación , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Autofagia , Mamíferos
2.
J Extracell Vesicles ; 11(2): e12188, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35106941

RESUMEN

Extracellular vesicles (EVs) are important mediators of intercellular communication. However, EV biogenesis remains poorly understood. We previously defined a role for Arrdc4 (Arrestin domain containing protein 4), an adaptor for Nedd4 family ubiquitin ligases, in the biogenesis of EVs. Here we report that ubiquitination of Arrdc4 is critical for its role in EV secretion. We identified five potential ubiquitinated lysine residues in Arrdc4 using mass spectrometry. By analysing Arrdc4 lysine mutants we discovered that lysine 270 (K270) is critical for Arrdc4 function in EV biogenesis. Arrdc4K270R mutation caused a decrease in the number of EVs released by cells compared to Arrdc4WT , and a reduction in trafficking of divalent metal transporter (DMT1) into EVs. Furthermore, we also observed a decrease in DMT1 activity and an increase in its intracellular degradation in the presence of Arrdc4K270R . K270 was found to be ubiquitinated with K-29 polyubiquitin chains by the ubiquitin ligase Nedd4-2. Thus, our results uncover a novel role of K-29 polyubiquitin chains in Arrdc4-mediated EV biogenesis and protein trafficking.


Asunto(s)
Vesículas Extracelulares , Ubiquitina-Proteína Ligasas , Vesículas Extracelulares/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Poliubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
3.
Cell Death Dis ; 12(4): 398, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33854040

RESUMEN

Kidney disease progression can be affected by Na+ abundance. A key regulator of Na+ homeostasis is the ubiquitin ligase NEDD4-2 and its deficiency leads to increased Na+ transport activity and salt-sensitive progressive kidney damage. However, the mechanisms responsible for high Na+ induced damage remain poorly understood. Here we show that a high Na+ diet compromised kidney function in Nedd4-2-deficient mice, indicative of progression toward end-stage renal disease. Injury was characterized by enhanced tubule dilation and extracellular matrix accumulation, together with sustained activation of both Wnt/ß-catenin and TGF-ß signaling. Nedd4-2 knockout in cortical collecting duct cells also activated these pathways and led to epithelial-mesenchymal transition. Furthermore, low dietary Na+ rescued kidney disease in Nedd4-2-deficient mice and silenced Wnt/ß-catenin and TGF-ß signaling. Our study reveals the important role of NEDD4-2-dependent ubiquitination in Na+ homeostasis and protecting against aberrant Wnt/ß-catenin/TGF-ß signaling in progressive kidney disease.


Asunto(s)
Homeostasis/fisiología , Fallo Renal Crónico/prevención & control , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Sodio/metabolismo , Ubiquitina/metabolismo , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Fallo Renal Crónico/metabolismo , Ratones Transgénicos , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Xenopus , Xenopus laevis/metabolismo
4.
Autophagy ; 17(10): 2734-2749, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33112206

RESUMEN

Macroautophagy/autophagy is a highly conserved lysosomal degradative pathway important for maintaining cellular homeostasis. Much of our current knowledge of autophagy is focused on the initiation steps in this process. Recently, an understanding of later steps, particularly lysosomal fusion leading to autolysosome formation and the subsequent role of lysosomal enzymes in degradation and recycling, is becoming evident. Autophagy can function in both cell survival and cell death, however, the mechanisms that distinguish adaptive/survival autophagy from autophagy-dependent cell death remain to be established. Here, using proteomic analysis of Drosophila larval midguts during degradation, we identify a group of proteins with peptidase activity, suggesting a role in autophagy-dependent cell death. We show that Cp1/cathepsin L-deficient larval midgut cells accumulate aberrant autophagic vesicles due to a block in autophagic flux, yet later stages of midgut degradation are not compromised. The accumulation of large aberrant autolysosomes in the absence of Cp1 appears to be the consequence of decreased degradative capacity as they contain undigested cytoplasmic material, rather than a defect in autophagosome-lysosome fusion. Finally, we find that other cathepsins may also contribute to proper autolysosomal degradation in Drosophila larval midgut cells. Our findings provide evidence that cathepsins play an essential role in the autolysosome to maintain basal autophagy flux by balancing autophagosome production and turnover.Abbreviations: 26-29-p: 26-29kD-proteinase; ADCD: autophagy-dependent cell death; Atg8a: Autophagy-related protein 8a; Cp1/cathepsin L: Cysteine proteinase-1; CtsB: Cathepsin B; cathD: cathepsin D; CtsF: Cathepsin F; GFP: green fluorescent protein; LAMP1: lysosomal-associated membrane protein 1; Mitf: microphthalmia associated transcription factor; PCA: principal component analysis; RNAi: RNA interference; RPF: relative to puparium formation.


Asunto(s)
Autofagia , Drosophila , Animales , Autofagia/genética , Catepsina L/metabolismo , Drosophila/genética , Lisosomas/metabolismo , Proteómica
5.
Cell Death Differ ; 27(6): 1832-1843, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31802037

RESUMEN

Salt homeostasis is maintained by tight control of Na+ filtration and reabsorption. In the distal part of the nephron the ubiquitin protein ligase Nedd4-2 regulates membrane abundance and thus activity of the epithelial Na+ channel (ENaC), which is rate-limiting for Na+ reabsorption. Nedd4-2 deficiency in mouse results in elevated ENaC and nephropathy, however the contribution of dietary salt to this has not been characterized. In this study we show that high dietary Na+ exacerbated kidney injury in Nedd4-2-deficient mice, significantly perturbing normal postnatal nephrogenesis and resulting in multifocal areas of renal dysplasia, increased markers of kidney injury and a decline in renal function. In control mice, high dietary Na+ resulted in reduced levels of ENaC. However, Nedd4-2-deficient kidneys maintained elevated ENaC even after high dietary Na+, suggesting that the inability to efficiently downregulate ENaC is responsible for the salt-sensitivity of disease. Importantly, low dietary Na+ significantly ameliorated nephropathy in Nedd4-2-deficient mice. Our results demonstrate that due to dysregulation of ENaC, kidney injury in Nedd4-2-deficient mice is sensitive to dietary Na+, which may have implications in the management of disease in patients with kidney disease.


Asunto(s)
Enfermedades Renales/metabolismo , Riñón , Ubiquitina-Proteína Ligasas Nedd4/fisiología , Sodio en la Dieta , Sodio , Animales , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Noqueados , Sodio/metabolismo , Sodio/farmacología , Sodio en la Dieta/metabolismo , Sodio en la Dieta/farmacología
6.
Trends Biochem Sci ; 43(8): 635-647, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30056838

RESUMEN

Protein modification by ubiquitination plays a key evolutionarily conserved role in regulating membrane proteins. Nedd4-2, a ubiquitin ligase, targets membrane proteins such as ion channels and transporters for ubiquitination. This Nedd4-2-mediated ubiquitination provides a crucial step in controlling the membrane availability of these proteins, thus affecting their signaling and physiological outcomes. In one well-studied example, Nedd4-2 fine-tunes the physiological function of the epithelial sodium channel (ENaC), thus modulating Na+ reabsorption by epithelia to maintain whole-body Na+ homeostasis. This review summarizes the key signaling pathways regulated by Nedd4-2 and the possible implications of such regulation in various pathologies.


Asunto(s)
Ubiquitina-Proteína Ligasas Nedd4/fisiología , Animales , Humanos , Ratones , Ratones Noqueados , Ubiquitina-Proteína Ligasas Nedd4/genética , Especificidad por Sustrato , Ubiquitinación
8.
Cell Death Differ ; 24(12): 2150-2160, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28862701

RESUMEN

NEDD4-2 (NEDD4L), a ubiquitin protein ligase of the Nedd4 family, is a key regulator of cell surface expression and activity of the amiloride-sensitive epithelial Na+ channel (ENaC). While hypomorphic alleles of Nedd4-2 in mice show salt-sensitive hypertension, complete knockout results in pulmonary distress and perinatal lethality due to increased cell surface levels of ENaC. We now show that Nedd4-2 deficiency in mice also results in an unexpected progressive kidney injury phenotype associated with elevated ENaC and Na+Cl- cotransporter expression, increased Na+ reabsorption, hypertension and markedly reduced levels of aldosterone. The observed nephropathy is characterized by fibrosis, tubule epithelial cell apoptosis, dilated/cystic tubules, elevated expression of kidney injury markers and immune cell infiltration, characteristics reminiscent of human chronic kidney disease. Importantly, we demonstrate that the extent of kidney injury can be partially therapeutically ameliorated in mice with nephron-specific deletions of Nedd4-2 by blocking ENaC with amiloride. These results suggest that increased Na+ reabsorption via ENaC causes kidney injury and establish a novel role of NEDD4-2 in preventing Na+-induced nephropathy. Contrary to some recent reports, our data also indicate that ENaC is the primary in vivo target of NEDD4-2 and that Nedd4-2 deletion is associated with hypertension on a normal Na+ diet. These findings provide further insight into the critical function of NEDD4-2 in renal pathophysiology.


Asunto(s)
Enfermedades Renales/enzimología , Ubiquitina-Proteína Ligasas Nedd4/deficiencia , Amilorida/farmacología , Animales , Bloqueadores del Canal de Sodio Epitelial/farmacología , Canales Epiteliales de Sodio/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones , Ratones Transgénicos , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo
9.
Gene ; 557(1): 1-10, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25433090

RESUMEN

NEDD4-2 (also known as NEDD4L, neural precursor cell expressed developmentally down-regulated 4-like) is a ubiquitin protein ligase of the Nedd4 family which is known to bind and regulate a number of membrane proteins to aid in their internalization and turnover. Several of the NEDD4-2 substrates include ion channels, such as the epithelial and voltage-gated sodium channels. Given the critical function of NEDD4-2 in regulating membrane proteins, this ligase is essential for the maintenance of cellular homeostasis. In this article we review the biology and function of this important ubiquitin-protein ligase and discuss its pathophysiological significance.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Canales Epiteliales de Sodio/metabolismo , Canales de Potasio KCNQ/metabolismo , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Presión Sanguínea/fisiología , Humanos , Hipertensión/fisiopatología , Ratones , Ubiquitina-Proteína Ligasas Nedd4 , Neoplasias/patología , Unión Proteica , Transporte de Proteínas , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Ubiquitinación
10.
PLoS One ; 5(3): e9618, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20224777

RESUMEN

The centrosome is the primary microtubule organizing centre of the cell. gamma-tubulin is a core component of the centrosome and is required for microtubule nucleation and centrosome function. The recruitment of gamma-tubulin to centrosomes is mediated by its interaction with NEDD1, a WD40-repeat containing protein. Here we demonstrate that NEDD1 is likely to be oligomeric in vivo and binds directly to gamma-tubulin through a small region of just 62 residues at the carboxyl-terminus of the protein. This carboxyl-terminal domain that binds gamma-tubulin has a helical structure and is a stable tetramer in solution. Mutation of residues in NEDD1 that disrupt binding to gamma-tubulin result in a mis-localization of gamma-tubulin away from the centrosome. Hence, this study defines the binding site on NEDD1 that is required for its interaction with gamma-tubulin, and shows that this interaction is required for the correct localization of gamma-tubulin.


Asunto(s)
Centrosoma/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Sitios de Unión , Línea Celular , Dicroismo Circular , Humanos , Ratones , Mutación , Células 3T3 NIH , Unión Proteica , Estructura Terciaria de Proteína , Dispersión de Radiación , Tubulina (Proteína)/química
11.
Histochem Cell Biol ; 129(6): 751-64, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18239929

RESUMEN

As the primary microtubule-organizing centre of the mammalian cell, the centrosome plays many important roles during cell growth and organization. This is evident across a broad range of cell types and processes, such as the proliferation, differentiation and polarity of neural cells. Additionally, given its localization and function, there are likely to be many more processes that rely on the centrosome that have not yet been characterized. Currently, little is known about centrosomal dynamics during mammalian development. In this study, we have analyzed Nedd1 protein expression to characterize the localization of the centrosome during some aspects of mouse embryogenesis. Using a Nedd1 antibody we have demonstrated the colocalization of Nedd1 with centrosomal markers. We found strong expression of Nedd1, and therefore the centrosome, in highly proliferating cells during neural development. Additionally, Nedd1 was found to have high expression in the cytoplasm of a subset of cells in the dorsal root ganglia. We have also shown a distinct, polarized centrosomal localization of Nedd1 in the developing lens, retina and other polarized tissues. This study reveals the localization of Nedd1 and the centrosome during important processes in mouse embryogenesis and provides a basis for further study into its role in development.


Asunto(s)
Sistema Nervioso Central/metabolismo , Centrosoma/metabolismo , Ojo/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Polaridad Celular , Sistema Nervioso Central/embriología , Cilios/metabolismo , Desarrollo Embrionario , Ojo/embriología , Ganglios Espinales/embriología , Ganglios Espinales/metabolismo , Humanos , Ratones , Especificidad de Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...