Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 147(22)2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33033119

RESUMEN

Animal germ cells communicate directly with each other during gametogenesis through intercellular bridges, often called ring canals (RCs), that form as a consequence of incomplete cytokinesis during cell division. Developing germ cells in Drosophila have an additional specialized organelle connecting the cells called the fusome. Ring canals and the fusome are required for fertility in Drosophila females, but little is known about their roles during spermatogenesis. With live imaging, we directly observe the intercellular movement of GFP and a subset of endogenous proteins through RCs during spermatogenesis, from two-cell diploid spermatogonia to clusters of 64 post-meiotic haploid spermatids, demonstrating that RCs are stable and open to intercellular traffic throughout spermatogenesis. Disruption of the fusome, a large cytoplasmic structure that extends through RCs and is important during oogenesis, had no effect on spermatogenesis or male fertility under normal conditions. Our results reveal that male germline RCs allow the sharing of cytoplasmic information that might play a role in quality control surveillance during sperm development.


Asunto(s)
Citoplasma/metabolismo , Meiosis/fisiología , Espermátides/metabolismo , Espermatogénesis/fisiología , Espermatogonias/metabolismo , Animales , Citoplasma/genética , Drosophila melanogaster , Masculino , Espermátides/citología , Espermatogonias/citología
2.
Genetics ; 216(3): 717-734, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32883702

RESUMEN

Ring canals in the female germline of Drosophila melanogaster are supported by a robust filamentous actin (F-actin) cytoskeleton, setting them apart from ring canals in other species and tissues. Previous work has identified components required for the expansion of the ring canal actin cytoskeleton, but has not identified the proteins responsible for F-actin recruitment or accumulation. Using a combination of CRISPR-Cas9 mediated mutagenesis and UAS-Gal4 overexpression, we show that HtsRC-a component specific to female germline ring canals-is both necessary and sufficient to drive F-actin accumulation. Absence of HtsRC in the germline resulted in ring canals lacking inner rim F-actin, while overexpression of HtsRC led to larger ring canals. HtsRC functions in combination with Filamin to recruit F-actin to ectopic actin structures in somatic follicle cells. Finally, we present findings that indicate that HtsRC expression and robust female germline ring canal expansion are important for high fecundity in fruit flies but dispensable for their fertility-a result that is consistent with our understanding of HtsRC as a newly evolved gene specific to female germline ring canals.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Citocinesis , Proteínas de Drosophila/metabolismo , Oogénesis , Actinas/metabolismo , Animales , Proteínas de Unión a Calmodulina/química , Proteínas de Unión a Calmodulina/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Filaminas/metabolismo , Óvulo/citología , Óvulo/metabolismo
3.
Development ; 146(14)2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31208963

RESUMEN

Gametogenesis is dependent on intercellular communication facilitated by stable intercellular bridges connecting developing germ cells. During Drosophila oogenesis, intercellular bridges (referred to as ring canals; RCs) have a dynamic actin cytoskeleton that drives their expansion to a diameter of 10 µm. Although multiple proteins have been identified as components of RCs, we lack a basic understanding of how RC proteins interact together to form and regulate the RC cytoskeleton. Thus, here, we optimized a procedure for proximity-dependent biotinylation in live tissue using the APEX enzyme to interrogate the RC interactome. APEX was fused to four different RC components (RC-APEX baits) and 55 unique high-confidence prey were identified. The RC-APEX baits produced almost entirely distinct interactomes that included both known RC proteins and uncharacterized proteins. A proximity ligation assay was used to validate close-proximity interactions between the RC-APEX baits and their respective prey. Furthermore, an RNA interference screen revealed functional roles for several high-confidence prey genes in RC biology. These findings highlight the utility of enzyme-catalyzed proximity labeling for protein interactome analysis in live tissue and expand our understanding of RC biology.


Asunto(s)
Comunicación Celular/genética , Células Germinativas/metabolismo , Imagen Molecular/métodos , Oogénesis , Mapas de Interacción de Proteínas/fisiología , Coloración y Etiquetado/métodos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Técnicas Citológicas/métodos , Citoesqueleto/genética , Citoesqueleto/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Drosophila melanogaster/genética , Femenino , Genes Reporteros , Uniones Intercelulares/fisiología , Oocitos/metabolismo , Oogénesis/genética , Unión Proteica , Mapas de Interacción de Proteínas/genética
4.
Development ; 146(1)2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559276

RESUMEN

During Drosophila oogenesis, specialized actin-based structures called ring canals form and expand to accommodate growth of the oocyte. Previous work demonstrated that Kelch and Cullin 3 function together in a Cullin 3-RING ubiquitin ligase complex (CRL3Kelch) to organize the ring canal cytoskeleton, presumably by targeting a substrate for proteolysis. Here, we use tandem affinity purification followed by mass spectrometry to identify HtsRC as the CRL3Kelch ring canal substrate. CRISPR-mediated mutagenesis of HtsRC revealed its requirement in the recruitment of the ring canal F-actin cytoskeleton. We present genetic evidence consistent with HtsRC being the CRL3Kelch substrate, as well as biochemical evidence indicating that HtsRC is ubiquitylated and degraded by the proteasome. Finally, we identify a short sequence motif in HtsRC that is necessary for Kelch binding. These findings uncover an unusual mechanism during development wherein a specialized cytoskeletal structure is regulated and remodeled by the ubiquitin-proteasome system.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Microfilamentos/metabolismo , Oocitos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitinación , Citoesqueleto de Actina/genética , Actinas/genética , Actinas/metabolismo , Animales , Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Microfilamentos/genética , Mutagénesis , Oocitos/citología , Complejo de la Endopetidasa Proteasomal/genética
5.
Genetics ; 201(3): 1117-31, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26384358

RESUMEN

The Drosophila Kelch protein is required to organize the ovarian ring canal cytoskeleton. Kelch binds and cross-links F-actin in vitro, and it also functions with Cullin 3 (Cul3) as a component of a ubiquitin E3 ligase. How these two activities contribute to cytoskeletal remodeling in vivo is not known. We used targeted mutagenesis to investigate the mechanism of Kelch function. We tested a model in which Cul3-dependent degradation of Kelch is required for its function, but we found no evidence to support this hypothesis. However, we found that mutant Kelch deficient in its ability to interact with Cul3 failed to rescue the kelch cytoskeletal defects, suggesting that ubiquitin ligase activity is the principal activity required in vivo. We also determined that the proteasome is required with Kelch to promote the ordered growth of the ring canal cytoskeleton. These results indicate that Kelch organizes the cytoskeleton in vivo by targeting a protein substrate for degradation by the proteasome.


Asunto(s)
Actinas/fisiología , Proteínas Cullin/fisiología , Proteínas de Drosophila/fisiología , Proteínas de Microfilamentos/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Animales , Citoesqueleto/fisiología , Drosophila/anatomía & histología , Drosophila/citología , Proteínas de Drosophila/genética , Femenino , Genitales Femeninos/citología , Proteínas de Microfilamentos/genética , Mutagénesis , Fenotipo , Complejo de la Endopetidasa Proteasomal/fisiología , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/química
6.
J Biol Chem ; 289(36): 25262-75, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25049229

RESUMEN

G protein-coupled receptor kinases (GRKs) phosphorylate agonist-occupied receptors initiating the processes of desensitization and ß-arrestin-dependent signaling. Interaction of GRKs with activated receptors serves to stimulate their kinase activity. The extreme N-terminal helix (αN), the kinase small lobe, and the active site tether (AST) of the AGC kinase domain have previously been implicated in mediating the allosteric activation. Expanded mutagenesis of the αN and AST allowed us to further assess the role of these two regions in kinase activation and receptor phosphorylation in vitro and in intact cells. We also developed a bioluminescence resonance energy transfer-based assay to monitor the recruitment of GRK2 to activated α(2A)-adrenergic receptors (α(2A)ARs) in living cells. The bioluminescence resonance energy transfer signal exhibited a biphasic response to norepinephrine concentration, suggesting that GRK2 is recruited to Gßγ and α(2A)AR with EC50 values of 15 nM and 8 µM, respectively. We show that mutations in αN (L4A, V7E, L8E, V11A, S12A, Y13A, and M17A) and AST (G475I, V477D, and I485A) regions impair or potentiate receptor phosphorylation and/or recruitment. We suggest that a surface of GRK2, including Leu(4), Val(7), Leu(8), Val(11), and Ser(12), directly interacts with receptors, whereas residues such as Asp(10), Tyr(13), Ala(16), Met(17), Gly(475), Val(477), and Ile(485) are more important for kinase domain closure and activation. Taken together with data on GRK1 and GRK6, our data suggest that all three GRK subfamilies make conserved interactions with G protein-coupled receptors, but there may be unique interactions that influence selectivity.


Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G/química , Simulación del Acoplamiento Molecular/métodos , Mapeo de Interacción de Proteínas/métodos , Receptores Acoplados a Proteínas G/química , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Células COS , Dominio Catalítico , Chlorocebus aethiops , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Células HEK293 , Humanos , Cinética , Datos de Secuencia Molecular , Mutación , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Receptores Adrenérgicos alfa 2/química , Receptores Adrenérgicos alfa 2/genética , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...