Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38680027

RESUMEN

BACKGROUND: Bacterial vaginosis (BV) is difficult to eradicate due to BV biofilms protecting BV bacteria (Gardnerella, Prevotella, and other genera). With the growing understanding of biofilms, we systematically reviewed the current knowledge on the efficacy of anti-BV biofilm agents. METHODS: We searched literature in the Scopus, Medline, and Embase databases for empirical studies investigating substances for the treatment of BV biofilms or prevention of their recurrence and their efficacy and/or safety. RESULTS: Of 201 unique titles, 35 satisfied the inclusion criteria. Most studies (89%) reported on preclinical laboratory research on the efficacy of experimental antibiofilm agents (80%) rather than their safety. Over 50% were published within the past 5 years. Agents were classified into 7 groups: antibiotics, antiseptics, cationic peptides, enzymes, plant extracts, probiotics, and surfactants/surfactant components. Enzymes and probiotics were most commonly investigated. Earlier reports of antibiotics having anti-BV biofilm activity have not been confirmed. Some compounds from other classes demonstrated promising anti-BV biofilm efficacy in early studies. CONCLUSIONS: Further research is anticipated on successful antibiofilm agents. If confirmed as effective and safe in human clinical trials, they may offer a breakthrough in BV treatment. With rising antibiotic resistance, antibiofilm agents will significantly improve the current standard of care for BV management.

2.
ACS Mater Au ; 3(4): 310-320, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38090131

RESUMEN

Antibiotic resistance continues to be an ongoing problem in global public health despite interventions to reduce antibiotic overuse. Furthermore, it threatens to undo the achievements and progress of modern medicine. To address these issues, the development of new alternative treatments is needed. Metallic nanoparticles have become an increasingly attractive alternative due to their unique physicochemical properties that allow for different applications and their various mechanisms of action. In this study, gallium nanoparticles (Ga NPs) were tested against several clinical strains of Pseudomonas aeruginosa (DFU53, 364077, and 365707) and multi-drug-resistant Acinetobacter baumannii (MRAB). The results showed that Ga NPs did not inhibit bacterial growth when tested against the bacterial strains using a broth microdilution assay, but they exhibited effects in biofilm production in P. aeruginosa DFU53. Furthermore, as captured by atomic force microscopy imaging, P. aeruginosa DFU53 and MRAB biofilms underwent morphological changes, appearing rough and irregular when they were treated with Ga NPs. Although Ga NPs did not affect planktonic bacterial growth, their effects on both biofilm formation and established biofilm demonstrate their potential role in the race to combat antibiotic resistance, especially in biofilm-related infections.

3.
Front Cell Infect Microbiol ; 13: 1216798, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965267

RESUMEN

Introduction: Proteus mirabilis is a key pathobiont in catheter-associated urinary tract infections (CA-UTIs), which is well known to form crystalline biofilms that occlude catheters. Urease activity alkylates urine through the release of ammonia, consequentially resulting in higher levels of Mg2+ and Ca2+ and formation of crystals. In this study, we showed that N-acetyl cysteine (NAC), a thiol antioxidant, is a potent urease inhibitor that prevents crystalline biofilm formation. Methods: To quantify urease activity, Berthelot's method was done on bacterial extracts treated with NAC. We also used an in vitro catheterised glass bladder model to study the effect of NAC treatment on catheter occlusion and biofilm encrustation in P. mirabilis infections. Inductively-coupled plasma mass spectrometry (ICP-MS) was performed on catheter samples to decipher elemental profiles. Results: NAC inhibits urease activity of clinical P. mirabilis isolates at concentrations as low as 1 mM, independent of bacterial killing. The study also showed that NAC is bacteriostatic on P. mirabilis, and inhibited biofilm formation and catheter occlusion in an in vitro. A significant 4-8log10 reduction in viable bacteria was observed in catheters infected in this model. Additionally, biofilms in NAC treated catheters displayed a depletion of calcium, magnesium, or phosphates (>10 fold reduction), thus confirming the absence of any urease activity in the presence of NAC. Interestingly, we also showed that not only is NAC anti-inflammatory in bladder epithelial cells (BECs), but that it mutes its inflammatory response to urease and P. mirabilis infection by reducing the production of IL-6, IL-8 and IL-1b. Discussion: Using biochemical, microbiological and immunological techniques, this study displays the functionality of NAC in preventing catheter occlusion by inhibiting urease activity. The study also highlights NAC as a strong anti-inflammatory antibiofilm agent that can target both bacterial and host factors in the treatment of CA-UTIs.


Asunto(s)
Infecciones por Proteus , Infecciones Urinarias , Humanos , Cateterismo Urinario , Acetilcisteína/farmacología , Ureasa , Infecciones por Proteus/tratamiento farmacológico , Infecciones por Proteus/prevención & control , Infecciones por Proteus/microbiología , Proteus mirabilis , Infecciones Urinarias/prevención & control , Infecciones Urinarias/microbiología , Catéteres , Inflamación/prevención & control , Antiinflamatorios/farmacología , Biopelículas
4.
Biomedicines ; 10(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36359406

RESUMEN

Cystic fibrosis (CF) is a disorder causing dysfunctional ion transport resulting in the accumulation of viscous mucus. This environment fosters a chronic bacterial biofilm-associated infection in the airways. Achromobacter xylosoxidans, a gram-negative aerobic bacillus, has been increasingly associated with antibiotic resistance and chronic colonisation in CF. In this study, we aimed to create a reproducible model of CF infection using an artificial sputum medium (ASMDM-1) with bronchial (BEAS-2B) and macrophage (THP-1) cells to test A. xylosoxidans infection and treatment toxicity. This study was conducted in three distinct stages. First, the tolerance of BEAS-2B cell lines and two A. xylosoxidans strains against ASMDM-1 was optimised. Secondly, the cytotoxicity of combined therapy (CT) comprising N-acetylcysteine (NAC) and the antibiotics colistin or ciprofloxacin was tested on cells alone in the sputum model in both BEAS-2B and THP-1 cells. Third, the efficacy of CT was assessed in the context of a bacterial infection within the live cell/sputum model. We found that a model using 20% ASMDM-1 in both cell populations tolerated a colistin-NAC-based CT and could significantly reduce bacterial loads in vitro (~2 log10 CFU/mL compared to untreated controls). This pilot study provides the foundation to study other bacterial opportunists that infect the CF lung to observe infection and CT kinetics. This model also acts as a springboard for more complex co-culture models.

5.
Microorganisms ; 10(7)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35888988

RESUMEN

In cystic fibrosis (CF), mutations in the CF transmembrane conductance regulator protein reduce ionic exchange in the lung, resulting in thicker mucus, which impairs mucociliary function, airway inflammation and infection. The mucosal and nutritional environment of the CF lung is inadequately mimicked by commercially available growth media, as it lacks key components involved in microbial pathogenesis. Defining the nutritional composition of CF sputum has been a long-term goal of in vitro research into CF infections to better elucidate bacterial growth and infection pathways. This narrative review highlights the development of artificial sputum medium, from a viable in vitro method for understanding bacterial mechanisms utilised in CF lung, to uses in the development of antimicrobial treatment regimens and examination of interactions at the epithelial cell surface and interior by the addition of host cell layers. The authors collated publications based on a PubMed search using the key words: "artificial sputum media" and "cystic fibrosis". The earliest iteration of artificial sputum media were developed in 1997. Formulations since then have been based either on published data or chemically derived from extracted sputum. Formulations contain combinations of mucin, extracellular DNA, iron, amino acids, and lipids. A valuable advantage of artificial sputum media is the ability to standardise media composition according to experimental requirements.

6.
APMIS ; 130(12): 690-705, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35393656

RESUMEN

This narrative review seeks to examine the relationships between bacterial microbiomes and infectious disease. This is achieved by detailing how different human host microbiomes develop and function, from the earliest infant acquisitions of maternal and environmental species through to the full development of microbiomes by adulthood. Communication between bacterial species or communities of species within and outside of the microbiome is a factor in both maintenance of homeostasis and management of threats from the external environment. Dysbiosis of this homeostasis is key to understanding the development of disease states. Several microbiomes and the microbiota within are used as prime examples of how changes in species composition, particularly at the phylum level, leads to such diverse conditions as inflammatory bowel disease (IBD), type 2 diabetes, psoriasis, Parkinson's disease, reflux oesophagitis and others. The review examines spatial relationships between microbiomes to understand how dysbiosis in the gut microbiome in particular can influence diseases in distant host sites via routes such as the gut-lung, gut-skin and gut-brain axes. Microbiome interaction with host processes such as adaptive immunity is increasingly identified as critical to developing the capacity of the immune system to react to pathogens. Dysbiosis of essential bacteria involved in modification of host substrates such as bile acid components can result in development of Crohn's disease, small intestine bacterial overgrowth, hepatic cancer and obesity. Interactions between microbiomes in distantly located sites are being increasingly being identified, resulting in a 'whole of body' effect by the combined host microbiome.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Microbiota , Humanos , Adulto , Disbiosis/microbiología , Bacterias
7.
Molecules ; 27(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35208954

RESUMEN

Quorum-sensing (QS) systems of Pseudomonas aeruginosa are involved in the control of biofilm formation and virulence factor production. The current study evaluated the ability of halogenated dihydropyrrol-2-ones (DHP) (Br (4a), Cl (4b), and F (4c)) and a non-halogenated version (4d) to inhibit the QS receptor proteins LasR and PqsR. The DHP molecules exhibited concentration-dependent inhibition of LasR and PqsR receptor proteins. For LasR, all compounds showed similar inhibition levels. However, compound 4a (Br) showed the highest decrease (two-fold) for PqsR, even at the lowest concentration (12.5 µg/mL). Inhibition of QS decreased pyocyanin production amongst P. aeruginosa PAO1, MH602, ATCC 25619, and two clinical isolates (DFU-53 and 364707). In the presence of DHP, P. aeruginosa ATCC 25619 showed the highest decrease in pyocyanin production, whereas clinical isolate DFU-53 showed the lowest decrease. All three halogenated DHPs also reduced biofilm formation by between 31 and 34%. The non-halogenated compound 4d exhibited complete inhibition of LasR and had some inhibition of PqsR, pyocyanin, and biofilm formation, but comparatively less than halogenated DHPs.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Percepción de Quorum/efectos de los fármacos , Piocianina/análogos & derivados , Piocianina/síntesis química , Piocianina/química , Piocianina/farmacología
8.
Antibiotics (Basel) ; 10(10)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34680757

RESUMEN

Cystic fibrosis (CF) is a genetic disorder causing dysfunctional ion transport resulting in accumulation of viscous mucus that fosters chronic bacterial biofilm-associated infection in the airways. Achromobacter xylosoxidans and Stenotrophomonas maltophilia are increasingly prevalent CF pathogens and while Burkholderia cencocepacia is slowly decreasing; all are complicated by multidrug resistance that is enhanced by biofilm formation. This study investigates potential synergy between the antibiotics ciprofloxacin (0.5-128 µg/mL), colistin (0.5-128 µg/mL) and tobramycin (0.5-128 µg/mL) when combined with the neutral pH form of N-Acetylcysteine (NACneutral) (0.5-16.3 mg/mL) against 11 cystic fibrosis strains of Burkholderia, Stenotrophomonas and Achromobacter sp. in planktonic and biofilm cultures. We screened for potential synergism using checkerboard assays from which fraction inhibitory concentration indices (FICI) were calculated. Synergistic (FICI ≤ 0.5) and additive (0.5 > FICI ≥ 1) combinations were tested on irreversibly attached bacteria and 48 h mature biofilms via time-course and colony forming units (CFU/mL) assays. This study suggests that planktonic FICI analysis does not necessarily translate to reduction in bacterial loads in a biofilm model. Future directions include refining synergy testing and determining further mechanisms of action of NAC to understand how it may interact with antibiotics to better predict synergy.

9.
Microorganisms ; 9(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34576767

RESUMEN

The ultimate aim of any antimicrobial treatment is a better infection outcome for the patient. Here, we review the current state of treatment for bacterial infections in cystic fibrosis (CF) lung while also investigating potential new treatments being developed to see how they may change the dynamics of antimicrobial therapy. Treatment with antibiotics coupled with regular physical therapy has been shown to reduce exacerbations and may eradicate some strains. Therapies such as hypertonic saline and inhaled PulmozymeTM (DNase-I) improve mucus clearance, while modifier drugs, singly and more successfully in combination, re-open certain mutant forms of the cystic fibrosis transmembrane conductance regulator (CFTR) to enable ion passage. No current method, however, completely eradicates infection, mainly due to bacterial survival within biofilm aggregates. Lung transplants increase lifespan, but reinfection is a continuing problem. CFTR modifiers normalise ion transport for the affected mutations, but there is conflicting evidence on bacterial clearance. Emerging treatments combine antibiotics with novel compounds including quorum-sensing inhibitors, antioxidants, and enzymes, or with bacteriophages, aiming to disrupt the biofilm matrix and improve antibiotic access. Other treatments involve bacteriophages that target, infect and kill bacteria. These novel therapeutic approaches are showing good promise in vitro, and a few have made the leap to in vivo testing.

10.
Antibiotics (Basel) ; 10(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34438950

RESUMEN

Introduction: Urinary tract infections (UTIs) affect more than 150 million individuals annually. A strong correlation exists between bladder epithelia invasion by uropathogenic bacteria and patients with recurrent UTIs. Intracellular bacteria often recolonise epithelial cells post-antibiotic treatment. We investigated whether N-acetylcysteine (NAC) could prevent uropathogenic E. coli and E. faecalis bladder cell invasion, in addition to its effect on uropathogens when used alone or in combination with ciprofloxacin. Methods: An invasion assay was performed in which bacteria were added to bladder epithelial cells (BECs) in presence of NAC and invasion was allowed to occur. Cells were washed with gentamicin, lysed, and plated for enumeration of the intracellular bacterial load. Cytotoxicity was evaluated by exposing BECs to various concentrations of NAC and quantifying the metabolic activity using resazurin at different exposure times. The effect of NAC on the preformed biofilms was also investigated by treating 48 h biofilms for 24 h and enumerating colony counts. Bacteria were stained with propidium iodide (PI) to measure membrane damage. Results: NAC completely inhibited BEC invasion by multiple E. coli and E. faecalis clinical strains in a dose-dependent manner (p < 0.01). This was also evident when bacterial invasion was visualised using GFP-tagged E. coli. NAC displayed no cytotoxicity against BECs despite its intrinsic acidity (pH ~2.6), with >90% cellular viability 48 h post-exposure. NAC also prevented biofilm formation by E. coli and E. faecalis and significantly reduced bacterial loads in 48 h biofilms when combined with ciprofloxacin. NAC visibly damaged E. coli and E. faecalis bacterial membranes, with a threefold increase in propidium iodide-stained cells following treatment (p < 0.05). Conclusions: NAC is a non-toxic, antibiofilm agent in vitro and can prevent cell invasion and IBC formation by uropathogens, thus providing a potentially novel and efficacious treatment for UTIs. When combined with an antibiotic, it may disrupt bacterial biofilms and eliminate residual bacteria.

11.
Int J Antimicrob Agents ; 58(2): 106372, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34116184

RESUMEN

Cystic fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). The resulting chloride and bicarbonate imbalance produces a thick, static lung mucus. This mucus is not easily expelled from the lung and can be colonised by bacteria, leading to biofilm formation. CF lung infection with Burkholderia cepacia complex (BCC), particularly the subspecies B. cenocepacia, results in higher morbidity and mortality. Patients infected with BCC can rapidly progress to "cepacia syndrome", a fatal necrotising pneumonia. The aim of this study was to identify whether a combination therapy (CT) of selected antioxidants and antibiotics significantly disrupts B. cenocepacia biofilms and to determine the optimum CT level for treatment. Using controlled in vitro spectrophotometry, colony-forming unit and microscopy assays, three antioxidants (N-acetylcysteine [NAC], glutathione and vitamin C) and three antibiotics (ciprofloxacin, ceftazidime and tobramycin) were screened and assessed for their ability to disrupt the early and mature biofilms of six B. cenocepacia CF isolates. A combination of NAC and ciprofloxacin produced a statistically significant biofilm disruption in all strains tested, with growth inhibition (>5-8 log10) observed when exposed to 4890 or 8150 µg/mL NAC in combination with 32 or 64 µg/mL ciprofloxacin. NAC-mediated biofilm disruption may be aided by the acidic pH of NAC at higher concentrations. This study showed that NAC is an effective disruptor that reduces the necessity for high concentrations of antibiotic. Further research will focus on the host toxicity and efficacy in ex vivo CF models.


Asunto(s)
Antibacterianos/farmacocinética , Antibacterianos/uso terapéutico , Biopelículas/efectos de los fármacos , Infecciones por Burkholderia/tratamiento farmacológico , Complejo Burkholderia cepacia/efectos de los fármacos , Fibrosis Quística/microbiología , Pulmón/microbiología , Humanos
12.
Langmuir ; 36(43): 13023-13033, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33079548

RESUMEN

Biofilm formation and antimicrobial resistance at surgical implant sites result in high morbidity and mortality. Identifying novel molecules that inhibit biofilm formation to coat surgical biomaterials is essential. One such compound is N-acetylcysteine (NAC), a potent antioxidant precursor for glutathione, necessary in mammalian cells and known to disrupt/prevent biofilms. In this study, NAC was covalently immobilized onto functionalized polyvinyl chloride surfaces using plasma immersion ion implantation (PIII) treatment that achieves covalent binding without the need for linker groups. NAC immobilization was characterized using water contact angles, Fourier-transform infrared, and X-ray photoelectron spectroscopy techniques. Bacterial viability and biofilm formation on NAC surfaces were assessed using resazurin assays, phase contrast microscopy, and colony counting experiments. Effect of NAC on bacterial polysaccharide production and DNA cleaving was investigated using the phenol-sulfuric acid method and the Qubit fluorometer. Surface thermodynamics between the NAC coating and bacterial cells were measured using the Lewis acid-base method. Surface characterization techniques demonstrated superficial changes after PIII treatment and subsequent covalent NAC immobilization. NAC-coated surfaces significantly reduced biofilm viability and the presence of Gram-negative and Gram-positive bacteria. NAC also decreased polysaccharide production and degraded DNA. This led to unfavorable conditions for biofilm formation on NAC-coated surfaces, as demonstrated by surface thermodynamic analysis. NAC-coated surfaces showed no cytotoxicity to human fibroblast cells. This study has successfully utilized NAC as an antibiofilm coating, which may pave the way for improved prophylactic coatings on medical implant devices in the future.


Asunto(s)
Acetilcisteína , Adhesión Bacteriana , Acetilcisteína/farmacología , Animales , Antibacterianos/toxicidad , Biopelículas , Bacterias Grampositivas , Humanos , Cloruro de Polivinilo
13.
J Antimicrob Chemother ; 75(7): 1787-1798, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32363384

RESUMEN

BACKGROUND: The WHO declared Staphylococcus aureus as a 'pathogen of high importance' in 2017. One-fifth of all bloodstream-related infections in Australia and 12 000 cases of bacteraemia in the UK (2017-18) were caused by the MRSA variant. To address the need for novel therapies, we investigated several permutations of an innovative combination therapy containing N-acetylcysteine (NAC), an antibiotic and an enzyme of choice in eradicating MRSA and MSSA biofilms. METHODS: Biofilm viability (resazurin assay) and colony count methods were used to investigate the effect of NAC, antibiotics and enzymes on S. aureus biofilm disruption and killing. The effects of NAC and enzymes on the polysaccharide content of biofilm matrices were analysed using the phenol/sulphuric acid method and the effect of NAC on DNA cleavage was determined using the Qubit fluorometer technique. Changes in biofilm architecture when subjected to NAC and enzymes were visualized using confocal laser scanning microscopy (CLSM). RESULTS: NAC alone displayed bacteriostatic effects when tested on planktonic bacterial growth. Combination treatments containing 30 mM NAC resulted in ≥90% disruption of biofilms across all MRSA and MSSA strains with a 2-3 log10 decrease in cfu/mL in treated biofilms. CLSM showed that NAC treatment drastically disrupted S. aureus biofilm architecture. There was also reduced polysaccharide production in MRSA biofilms in the presence of NAC. CONCLUSIONS: Our results indicate that inclusion of NAC in a combination treatment is a promising strategy for S. aureus biofilm eradication. The intrinsic acidity of NAC was identified as key to maximum biofilm disruption and degradation of matrix components.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Acetilcisteína/farmacología , Antibacterianos/farmacología , Australia , Biopelículas , Pruebas de Sensibilidad Microbiana
14.
Front Microbiol ; 10: 2000, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31543871

RESUMEN

Bacterial antibiotic resistance has increased in recent decades, raising concerns in hospital and community settings. Novel, innovative strategies are needed to eradicate bacteria, particularly within biofilms, and diminish the likelihood of recurrence. In this study, we investigated whether glutathione (GSH) can act as a biofilm disruptor, and enhance antibiotic effectiveness against various bacterial pathogens. Biological levels (10 mM) of GSH did not have a significant effect in inhibiting growth or disrupting the biofilm in four out of six species tested. However, exposure to 30 mM GSH showed >50% decrease in growth for all bacterial species, with almost 100% inhibition of Streptococcus pyogenes and an average of 94-52% inhibition for Escherichia coli, Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-sensitive S. aureus (MSSA) and multi-drug resistant Acinetobacter baumannii (MRAB) isolates, respectively. Klebsiella pneumoniae and Enterobacter sp. isolates were however, highly resistant to 30 mM GSH. With respect to biofilm viability, all species exhibited a >50% decrease in viability with 30 mM GSH, with confocal imaging showing considerable change in the biofilm architecture of MRAB isolates. The mechanism of GSH-mediated biofilm disruption is possibly due to a concentration-dependent increase in GSH acidity that triggers cleaving of the matrix components. Enzymatic treatment of MRAB revealed that eDNA and polysaccharides are essential for biofilm stability and eDNA removal enhanced amikacin efficiency. Combination of GSH, amikacin and DNase-I showed the greatest reduction in MRAB biofilm viability. Additionally, GSH alone and in combination with amikacin fostered human fibroblast cell (HFF-1) growth and confluence while inhibiting MRAB adhesion and colonization.

15.
AAPS J ; 21(3): 49, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30949776

RESUMEN

Antibiotic resistance in Pseudomonas aeruginosa biofilms necessitates the need for novel antimicrobial therapy with anti-biofilm properties. Bacteriophages (phages) are recognized as an ideal biopharmaceutical for combating antibiotic-resistant bacteria especially when used in combination with antibiotics. However, previous studies primarily focused on using phages against of P. aeruginosa biofilms of laboratory strains. In the present study, biofilms of six P. aeruginosa isolated from cystic fibrosis and wound patients, and one laboratory strain was treated singly and with combinations of anti-Pseudomonas phage PEV20 and ciprofloxacin. Of these strains, three were highly susceptible to the phage, while one was partially resistant and one was completely resistant. Combination treatment with PEV20 and ciprofloxacin enhanced biofilm eradication compared with single treatment. Phage and ciprofloxacin synergy was found to depend on phage-resistance profile of the target bacteria. Furthermore, phage and ciprofloxacin combination formulation protected the lung epithelial and fibroblast cells from P. aeruginosa and promoted cell growth. The results demonstrated that thorough screening of phage-resistance is crucial for designing phage-antibiotic formulation. The addition of highly effective phage could reduce the ciprofloxacin concentration required to combat P. aeruginosa infections associated with biofilm in cystic fibrosis and wound patients.


Asunto(s)
Antibacterianos/administración & dosificación , Terapia Biológica/métodos , Fibrosis Quística/terapia , Infecciones por Pseudomonas/terapia , Fagos Pseudomonas , Pseudomonas aeruginosa/virología , Infección de Heridas/terapia , Biopelículas/efectos de los fármacos , Línea Celular , Ciprofloxacina/administración & dosificación , Terapia Combinada , Fibrosis Quística/microbiología , Farmacorresistencia Bacteriana , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Infección de Heridas/microbiología
16.
Mol Pharm ; 16(4): 1723-1731, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30763098

RESUMEN

Antibiotic resistance in pathogenic bacteria has emerged as a big challenge to human and animal health and significant economy loss worldwide. Development of novel strategies to tackle antibiotic resistance is of the utmost priority. In this study, we combined glutathione (GSH), a master antioxidant in all mammalian cells, and nitric oxide, a proven biofilm-dispersing agent, to produce GSNO. The resazurin biofilm viability assay, crystal violet biofilm assay, and confocal microscopy techniques showed that GSNO disrupted biofilms of both P. aeruginosa PAO1 and multidrug resistant A. baumaunii (MRAB 015069) more efficiently than GSH alone. In addition, GSNO showed a higher reduction in biofilm viability and biomass when combined with antibiotics. This combination treatment also inhibited A. baumaunii (MRAB 015069) growth and facilitated human foreskin fibroblast (HFF-1) confluence and growth simultaneously. A potentially inhalable GSNO powder with reasonable aerosol performance and antibiofilm activity was produced by spray drying. This combination shows promise as a novel formulation for treating pulmonary bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Inhaladores de Polvo Seco/métodos , Glutatión/química , Pulmón/efectos de los fármacos , Óxido Nítrico/química , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/química , Biopelículas/efectos de los fármacos , Enfermedad Crónica , Composición de Medicamentos , Fibroblastos/efectos de los fármacos , Fibroblastos/microbiología , Humanos , Pulmón/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Infecciones del Sistema Respiratorio/microbiología
17.
Nanomaterials (Basel) ; 7(8)2017 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-28825641

RESUMEN

The inhibitory effect of gallium (Ga) ions on bone resorption and their superior microbial activity are attractive and sought-after features for the vast majority of implantable devices, in particular for implants used for hard tissue. In our work, for the first time, Ga ions were successfully incorporated into the surface of titanium metal (Ti) by simple and cost-effective chemical and heat treatments. Ti samples were initially treated in NaOH solution to produce a nanostructured sodium hydrogen titanate layer approximately 1 µm thick. When the metal was subsequently soaked in a mixed solution of CaCl2 and GaCl3, its Na ions were replaced with Ca and Ga ions in a Ga/Ca ratio range of 0.09 to 2.33. 8.0% of the Ga ions were incorporated into the metal surface when the metal was soaked in a single solution of GaCl3 after the NaOH treatment. The metal was then heat-treated at 600 °C to form Ga-containing calcium titanate (Ga-CT) or gallium titanate (GT), anatase and rutile on its surface. The metal with Ga-CT formed bone-like apatite in a simulated body fluid (SBF) within 3 days, but released only 0.23 ppm of the Ga ions in a phosphate-buffered saline (PBS) over a period of 14 days. In contrast, Ti with GT did not form apatite in SBF, but released 2.96 ppm of Ga ions in PBS. Subsequent soaking in hot water at 80 °C dramatically enhanced apatite formation of the metal by increasing the release of Ga ions up to 3.75 ppm. The treated metal exhibited very high antibacterial activity against multidrug resistant Acinetobacter baumannii (MRAB12). Unlike other antimicrobial coating on titanium implants, Ga-CT and GT interfaces were shown to have a unique combination of antimicrobial and bioactive properties. Such dual activity is essential for the next generation of orthopaedic and dental implants. The goal of combining both functions without inducing cytotoxicity is a major advance and has far reaching translational perspectives. This unique dual-function biointerfaces will inhibit bone resorption and show antimicrobial activity through the release of Ga ions, while tight bonding to the bone will be achieved through the apatite formed on the surface.

18.
Front Microbiol ; 8: 2429, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312161

RESUMEN

Pyocyanin secreted by Pseudomonas aeruginosa is a virulence factor that damages epithelial cells during infection through the action of reactive oxygen species, however, little is known about its direct effect on biofilms. We demonstrated that pyocyanin-producing P. aeruginosa strains (PA14WT, DKN370, AES-1R, and AES-2) formed robust biofilms in contrast to the poorly formed biofilms of the pyocyanin mutant PA14ΔphzA-G and the low pyocyanin producer AES-1M. Addition of DNase I and reduced glutathione (GSH) significantly reduced biofilm biomass of pyocyanin-producing strains (P < 0.05) compared to non-pyocyanin producers. Subsequently we showed that a combined treatment comprising: GSH + DNase I + antibiotic, disrupted and reduced biofilm biomass up to 90% in cystic fibrosis isolates AES-1R, AES-2, LESB58, and LES431 and promoted lung epithelial cell (A549) recovery and growth. We also showed that exogenously added GSH restored A549 epithelial cell glutathione reductase activity in the presence of pyocyanin through recycling of GSSG to GSH and consequently increased total intracellular GSH levels, inhibiting oxidative stress, and facilitating cell growth and confluence. These outcomes indicate that GSH has multiple roles in facilitating a return to normal epithelial cell growth after insult by pyocyanin. With increased antibiotic resistance in many bacterial species, there is an urgency to establish novel antimicrobial agents. GSH is able to rapidly and comprehensively destroy P. aeruginosa associated biofilms while at a same time assisting in the recovery of host cells and re-growth of damaged tissue.

19.
Antimicrob Agents Chemother ; 60(8): 4539-51, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27161630

RESUMEN

Pseudomonas aeruginosa infections result in high morbidity and mortality rates for individuals with cystic fibrosis (CF), with premature death often occurring. These infections are complicated by the formation of biofilms in the sputum. Antibiotic therapy is stymied by antibiotic resistance of the biofilm matrix, making novel antibiofilm strategies highly desirable. Within P. aeruginosa biofilms, the redox factor pyocyanin enhances biofilm integrity by intercalating with extracellular DNA. The antioxidant glutathione (GSH) reacts with pyocyanin, disrupting intercalation. This study investigated GSH disruption by assaying the physiological effects of GSH and DNase I on biofilms of clinical CF isolates grown in CF artificial sputum medium (ASMDM+). Confocal scanning laser microscopy showed that 2 mM GSH, alone or combined with DNase I, significantly disrupted immature (24-h) biofilms of Australian epidemic strain (AES) isogens AES-1R and AES-1M. GSH alone greatly disrupted mature (72-h) AES-1R biofilms, resulting in significant differential expression of 587 genes, as indicated by RNA-sequencing (RNA-seq) analysis. Upregulated systems included cyclic diguanylate and pyoverdine biosynthesis, the type VI secretion system, nitrate metabolism, and translational machinery. Biofilm disruption with GSH revealed a cellular physiology distinct from those of mature and dispersed biofilms. RNA-seq results were validated by biochemical and quantitative PCR assays. Biofilms of a range of CF isolates disrupted with GSH and DNase I were significantly more susceptible to ciprofloxacin, and increased antibiotic effectiveness was achieved by increasing the GSH concentration. This study demonstrated that GSH, alone or with DNase I, represents an effective antibiofilm treatment when combined with appropriate antibiotics, pending in vivo studies.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Glutatión/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Proteínas Bacterianas/genética , Reacción en Cadena de la Polimerasa , Transcriptoma/genética
20.
Front Microbiol ; 6: 1036, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26483767

RESUMEN

The International Pseudomonas aeruginosa Consortium is sequencing over 1000 genomes and building an analysis pipeline for the study of Pseudomonas genome evolution, antibiotic resistance and virulence genes. Metadata, including genomic and phenotypic data for each isolate of the collection, are available through the International Pseudomonas Consortium Database (http://ipcd.ibis.ulaval.ca/). Here, we present our strategy and the results that emerged from the analysis of the first 389 genomes. With as yet unmatched resolution, our results confirm that P. aeruginosa strains can be divided into three major groups that are further divided into subgroups, some not previously reported in the literature. We also provide the first snapshot of P. aeruginosa strain diversity with respect to antibiotic resistance. Our approach will allow us to draw potential links between environmental strains and those implicated in human and animal infections, understand how patients become infected and how the infection evolves over time as well as identify prognostic markers for better evidence-based decisions on patient care.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA