Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Neural Circuits ; 15: 653116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421547

RESUMEN

Circuit interactions within the medial entorhinal cortex (MEC) translate movement into a coherent code for spatial location. Entorhinal principal cells are subject to strong lateral inhibition, suggesting that a disinhibitory mechanism may drive their activation. Cortical Vasoactive Intestinal Peptide (VIP) expressing inhibitory neurons are known to contact other interneurons and excitatory cells and are thus capable of providing a local disinhibitory mechanism, yet little is known about this cell type in the MEC. To investigate the electrophysiological and morphological properties of VIP cells in the MEC, we use in vitro whole-cell patch-clamp recordings in VIPcre/tdTom mice. We report several gradients in electrophysiological properties of VIP cells that differ across laminae and along the dorsal-ventral MEC axis. We additionally show that VIP cells have distinct morphological features across laminae. Together, these results characterize the cellular and morphological properties of VIP cells in the MEC.


Asunto(s)
Corteza Entorrinal , Péptido Intestinal Vasoactivo , Potenciales de Acción , Animales , Interneuronas/metabolismo , Ratones , Técnicas de Placa-Clamp , Péptido Intestinal Vasoactivo/metabolismo
2.
PLoS Biol ; 19(8): e3001383, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460812

RESUMEN

The hippocampal spatial code's relevance for downstream neuronal populations-particularly its major subcortical output the lateral septum (LS)-is still poorly understood. Here, using calcium imaging combined with unbiased analytical methods, we functionally characterized and compared the spatial tuning of LS GABAergic cells to those of dorsal CA3 and CA1 cells. We identified a significant number of LS cells that are modulated by place, speed, acceleration, and direction, as well as conjunctions of these properties, directly comparable to hippocampal CA1 and CA3 spatially modulated cells. Interestingly, Bayesian decoding of position based on LS spatial cells reflected the animal's location as accurately as decoding using the activity of hippocampal pyramidal cells. A portion of LS cells showed stable spatial codes over the course of multiple days, potentially reflecting long-term episodic memory. The distributions of cells exhibiting these properties formed gradients along the anterior-posterior and dorsal-ventral axes of the LS, directly reflecting the topographical organization of hippocampal inputs to the LS. Finally, we show using transsynaptic tracing that LS neurons receiving CA3 and CA1 excitatory input send projections to the hypothalamus and medial septum, regions that are not targeted directly by principal cells of the dorsal hippocampus. Together, our findings demonstrate that the LS accurately and robustly represents spatial, directional as well as self-motion information and is uniquely positioned to relay this information from the hippocampus to its downstream regions, thus occupying a key position within a distributed spatial memory network.


Asunto(s)
Neuronas GABAérgicas/fisiología , Tabique del Cerebro/citología , Memoria Espacial/fisiología , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Femenino , Masculino , Ratones
3.
Front Neural Circuits ; 14: 629162, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362480

RESUMEN

[This corrects the article DOI: 10.3389/fncir.2020.00019.].

4.
Front Neural Circuits ; 14: 19, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32499681

RESUMEN

Understanding the role of neuronal activity in cognition and behavior is a key question in neuroscience. Previously, in vivo studies have typically inferred behavior from electrophysiological data using probabilistic approaches including Bayesian decoding. While providing useful information on the role of neuronal subcircuits, electrophysiological approaches are often limited in the maximum number of recorded neurons as well as their ability to reliably identify neurons over time. This can be particularly problematic when trying to decode behaviors that rely on large neuronal assemblies or rely on temporal mechanisms, such as a learning task over the course of several days. Calcium imaging of genetically encoded calcium indicators has overcome these two issues. Unfortunately, because calcium transients only indirectly reflect spiking activity and calcium imaging is often performed at lower sampling frequencies, this approach suffers from uncertainty in exact spike timing and thus activity frequency, making rate-based decoding approaches used in electrophysiological recordings difficult to apply to calcium imaging data. Here we describe a probabilistic framework that can be used to robustly infer behavior from calcium imaging recordings and relies on a simplified implementation of a naive Baysian classifier. Our method discriminates between periods of activity and periods of inactivity to compute probability density functions (likelihood and posterior), significance and confidence interval, as well as mutual information. We next devise a simple method to decode behavior using these probability density functions and propose metrics to quantify decoding accuracy. Finally, we show that neuronal activity can be predicted from behavior, and that the accuracy of such reconstructions can guide the understanding of relationships that may exist between behavioral states and neuronal activity.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Calcio/metabolismo , Locomoción/fisiología , Imagen Molecular/métodos , Neuronas/metabolismo , Animales , Teorema de Bayes , Región CA1 Hipocampal/química , Región CA1 Hipocampal/citología , Calcio/análisis , Ratones , Neuronas/química , Probabilidad
5.
Nat Commun ; 10(1): 5322, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31757962

RESUMEN

Slow gamma oscillations (30-60 Hz) correlate with retrieval of spatial memory. Altered slow gamma oscillations have been observed in Alzheimer's disease. Here, we use the J20-APP AD mouse model that displays spatial memory loss as well as reduced slow gamma amplitude and phase-amplitude coupling to theta oscillations phase. To restore gamma oscillations in the hippocampus, we used optogenetics to activate medial septal parvalbumin neurons at different frequencies. We show that optogenetic stimulation of parvalbumin neurons at 40 Hz (but not 80 Hz) restores hippocampal slow gamma oscillations amplitude, and phase-amplitude coupling of the J20 AD mouse model. Restoration of slow gamma oscillations during retrieval rescued spatial memory in mice despite significant plaque deposition. These results support the role of slow gamma oscillations in memory and suggest that optogenetic stimulation of medial septal parvalbumin neurons at 40 Hz could provide a novel strategy for treating memory deficits in AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Ritmo Gamma/fisiología , Hipocampo/fisiopatología , Neuronas/fisiología , Placa Amiloide/fisiopatología , Memoria Espacial/fisiología , Ritmo Teta/fisiología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Memoria/fisiología , Recuerdo Mental/fisiología , Ratones , Optogenética , Parvalbúminas , Núcleos Septales/citología
6.
Front Cell Neurosci ; 12: 121, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867356

RESUMEN

Alzheimer's disease (AD) is defined by the presence of amyloid-ß (Aß) and tau protein aggregates. However, increasing data is suggesting that brain network alterations rather than protein deposition could account for the early pathogenesis of the disease. In the present study, we performed in vitro extracellular field recordings in the CA1/subiculum area of the hippocampus from 30 days old J20-TG-AD mice. Here, we found that theta oscillations were significantly less rhythmic than those recorded from control group. In addition, J20 mice displayed significantly less theta-gamma cross-frequency coupling (CFC) as peak modulation indexes for slow (25-45 Hz) and fast (150-250 Hz) gamma frequency oscillations were reduced. Because inhibitory parvalbumin (PV) cells play a vital role in coordinating hippocampal theta and gamma oscillations, whole-cell patch-clamp recordings and extracellular stimulation were performed to access their intrinsic and synaptic properties. Whereas neither the inhibitory output of local interneurons to pyramidal cells (PCs) (inhibitory→PC) nor the excitatory output of PCs to PV cells (PC→PV) differed between control and J20 animals, the intrinsic excitability of PV cells was reduced in J20 mice compared to controls. Interestingly, optogenetic activation of PV interneurons which can directly drive theta oscillations in the hippocampus, did not rescue CFC impairments, suggesting the latter did not simply result from alteration of the underlying theta rhythm. Altered young J20 mice was characterized by the presence of ß-CTF, but not with Aß accumulation, in the hippocampus. Importantly, the ß secretase inhibitor AZD3839-AstraZeneca significantly rescued the abnormal early electrophysiological phenotype of J20 mice. In conclusion, our data show that brain network alterations precede the canonical Aß protein deposition and that, such alterations can be related to ß-CTF fragment.

7.
Front Cell Neurosci ; 12: 32, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29487503

RESUMEN

The nicotinic acetylcholine receptor alpha2 subunit (Chrna2) is a specific marker for oriens lacunosum-moleculare (OLM) interneurons in the dorsal CA1 region of the hippocampus. It was recently shown using a Chrna2-cre mice line that OLM interneurons can modulate entorhinal cortex and CA3 inputs and may therefore have an important role in gating, encoding, and recall of memory. In this study, we have used a combination of electrophysiology and optogenetics using Chrna2-cre mice to determine the role of Chrna2 interneurons in the subiculum area, the main output region of the hippocampus. We aimed to assess the similarities between Chrna2 subiculum and CA1 neurons in terms of the expression of interneuron markers, their membrane properties, and their inhibitory input to pyramidal neurons. We found that subiculum and CA1 dorsal Chrna2 cells similarly expressed the marker somatostatin and had comparable membrane and firing properties. The somas of Chrna2 cells in both regions were found in the deepest layer with axons projecting superficially. However, subiculum Chrna2 cells displayed more extensive projections with dendrites which occupied a significantly larger area than in CA1. The post-synaptic responses elicited by Chrna2 cells in pyramidal cells of both regions revealed comparable inhibitory responses elicited by GABAA receptors and, interestingly, GABAB receptor mediated components. This study provides the first in-depth characterization of Chrna2 cells in the subiculum, and suggests that subiculum and CA1 Chrna2 cells are generally similar and may play comparable roles in both sub-regions.

8.
J Vis Exp ; (126)2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28809843

RESUMEN

This protocol outlines the procedures for preparing and recording from the isolated whole hippocampus, of WT and transgenic mice, along with recent improvements in methodologies and applications for the study of theta oscillations. A simple characterization of the isolated hippocampal preparation is presented whereby the relationship between internal hippocampal theta oscillators is examined together with the activity of pyramidal cells, and GABAergic interneurons, of the cornu ammonis-1 (CA1) and subiculum (SUB) areas. Overall, we show that the isolated hippocampus is capable of generating intrinsic theta oscillations in vitro and that rhythmicity generated within the hippocampus can be precisely manipulated by optogenetic stimulation of parvalbumin-positive (PV) interneurons. The in vitro isolated hippocampal preparation offers a unique opportunity to use simultaneous field and intracellular patch-clamp recordings from visually-identified neurons to better understand the mechanisms underlying theta rhythm generation.


Asunto(s)
Electrofisiología/métodos , Hipocampo/fisiología , Ritmo Teta , Animales , Región CA1 Hipocampal/fisiología , Disección/instrumentación , Disección/métodos , Electrofisiología/instrumentación , Hipocampo/citología , Hipocampo/cirugía , Interneuronas/fisiología , Ratones , Ratones Transgénicos , Neuronas/fisiología , Optogenética/instrumentación , Optogenética/métodos , Técnicas de Cultivo de Órganos/instrumentación , Técnicas de Cultivo de Órganos/métodos , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp/instrumentación , Técnicas de Placa-Clamp/métodos , Perfusión/instrumentación , Perfusión/métodos , Células Piramidales/fisiología , Roedores
9.
Front Cell Neurosci ; 11: 140, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28559797

RESUMEN

Hippocampal interneurons release the inhibitory transmitter GABA to regulate excitation, rhythm generation and synaptic plasticity. A subpopulation of GABAergic basket cells co-expresses the GABA/glycine vesicular transporters (VIAAT) and the atypical type III vesicular glutamate transporter (VGLUT3); therefore, these cells have the ability to signal with both GABA and glutamate. GABAergic transmission by basket cells has been extensively characterized but nothing is known about the functional implications of VGLUT3-dependent glutamate released by these cells. Here, using VGLUT3-null mice we observed that the loss of VGLUT3 results in a metaplastic shift in synaptic plasticity at Shaeffer's collaterals - CA1 synapses and an altered theta oscillation. These changes were paralleled by the loss of a VGLUT3-dependent inhibition of GABAergic current in CA1 pyramidal layer. Therefore presynaptic type III metabotropic could be activated by glutamate released from VGLUT3-positive interneurons. This putative presynaptic heterologous feedback mechanism inhibits local GABAergic tone and regulates the hippocampal neuronal network.

10.
J Neurosci ; 37(11): 2999-3008, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28209738

RESUMEN

Despite many advances made in understanding the pathophysiology of epileptic disorders, seizures remain poorly controlled in approximately one-third of patients with mesial temporal lobe epilepsy. Here, we established the efficacy of cell type-specific low-frequency stimulation (LFS) in controlling ictogenesis in the mouse entorhinal cortex (EC) in an in vitro brain slice preparation. Specifically, we used 1 Hz optogenetic stimulation of calcium/calmodulin-dependent protein kinase II-positive principal cells as well as of parvalbumin- or somatostatin-positive interneurons to study the effects of such repetitive activation on epileptiform discharges induced by 4-aminopyridine. We found that 1 Hz stimulation of any of these cell types reduced the frequency and duration of ictal discharges in some trials, while completely blocking them in others. The field responses evoked by the stimulation of each cell type revealed that their duration and amplitude were higher when principal cells were targeted. Furthermore, following a short period of silence ranging from 67 to 135 s, ictal discharges were re-established with similar duration and frequency as before stimulation; however, this period of silence was longer following principal cell stimulation compared with parvalbumin- or somatostatin-positive interneuron stimulation. Our results show that LFS of either excitatory or inhibitory cell networks in EC are effective in controlling ictogenesis. Although optogenetic stimulation of either cell type significantly reduced the occurrence of ictal discharges, principal cell stimulation resulted in a more prolonged suppression of ictogenesis, and, thus, it may constitute a better approach for controlling seizures.SIGNIFICANCE STATEMENT Epilepsy is a neurological disorder characterized by an imbalance between excitation and inhibition leading to seizures. Many epileptic patients do not achieve adequate seizure control using antiepileptic drugs. Low-frequency stimulation (LFS) is an alternative tool for controlling epileptiform activity in these patients. However, despite the temporal and spatial control offered by LFS, such a procedure lacks cell specificity, which may limit its efficacy. Using an optogenetic approach, we report here that LFS of two interneuron subtypes and, even more so, of principal cells can reliably shorten or abolish seizures in vitro Our work suggests that targeted LFS may constitute a reliable means for controlling seizures in patients presenting with focal seizures.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Corteza Entorrinal/fisiopatología , Epilepsia/prevención & control , Epilepsia/fisiopatología , Interneuronas , Optogenética/métodos , Animales , Epilepsia/diagnóstico , Femenino , Masculino , Ratones , Ratones Transgénicos , Red Nerviosa/fisiopatología , Resultado del Tratamiento
11.
J Neurosci ; 36(25): 6605-22, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27335395

RESUMEN

UNLABELLED: Theta oscillations are essential for learning and memory, and their generation requires GABAergic interneurons. To better understand how theta is generated, we explored how parvalbumin (PV) and somatostatin (SOM) interneurons in CA1 stratum oriens/alveus fire during hippocampal theta and investigated synaptic mechanisms underlying their behavior. Combining the use of transgenic mice to visually identify PV and SOM interneurons and the intact hippocampal preparation that can generate theta oscillations in vitro without cholinergic agonists, we performed simultaneous field and whole-cell recordings. We found that PV interneurons uniformly fire strongly phase-locked to theta, whereas SOM neurons are more heterogeneous with only a proportion of cells displaying tight phase-locking. Differences in phase-locking strength could be explained by disparity in excitatory inputs received; PV neurons received significantly larger EPSCs compared with SOM neurons, and the degree of phase-locking in SOM neurons was significantly correlated with the size of EPSCs. In contrast, IPSC amplitude did not differ between cell types. We determined that the local CA1 rhythm plays a more dominant role in driving CA1 interneuron firing than afferent inputs from the CA3. Last, we show that PV and strongly phase-locked SOM neurons fire near the peak of CA1 theta, under the tight control of excitatory inputs that arise at a specific phase of each theta cycle. These results reveal a fundamental mechanism of neuronal phase-locking and highlight an important role of excitation from the local network in governing firing behavior during rhythmic network states. SIGNIFICANCE STATEMENT: Rhythmic activity in the theta range (3-12 Hz) is important for proper functioning of the hippocampus, a brain area essential for learning and memory. To understand how theta rhythm is generated, we investigated how two types of inhibitory neurons, those that express parvalbumin and somatostatin, fire action potentials during theta in an in vitro preparation of the mouse hippocampus. We found that the amount of excitatory input they receive from the local network determines how closely their spikes follow the network theta rhythm. Our findings reveal an important role of local excitatory input in driving inhibitory neuron firing during rhythmic states and may have implications for diseases, such as epilepsy and Alzheimer's disease, which affect the hippocampus and related areas.


Asunto(s)
Potenciales de Acción/fisiología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Interneuronas/fisiología , Parvalbúminas/metabolismo , Somatostatina/metabolismo , Ritmo Teta/fisiología , Potenciales de Acción/genética , Animales , Región CA1 Hipocampal/metabolismo , Estimulación Eléctrica , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Parvalbúminas/genética , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Somatostatina/genética , Estadísticas no Paramétricas , Potenciales Sinápticos/genética , Potenciales Sinápticos/fisiología
12.
J Neurophysiol ; 115(6): 3229-37, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27075542

RESUMEN

Low-voltage fast (LVF) and hypersynchronous (HYP) patterns are the seizure-onset patterns most frequently observed in intracranial EEG recordings from mesial temporal lobe epilepsy (MTLE) patients. Both patterns also occur in models of MTLE in vivo and in vitro, and these studies have highlighted the predominant involvement of distinct neuronal network/neurotransmitter receptor signaling in each of them. First, LVF-onset seizures in epileptic rodents can originate from several limbic structures, frequently spread, and are associated with high-frequency oscillations in the ripple band (80-200 Hz), whereas HYP onset seizures initiate in the hippocampus and tend to remain focal with predominant fast ripples (250-500 Hz). Second, in vitro intracellular recordings from principal cells in limbic areas indicate that pharmacologically induced seizure-like discharges with LVF onset are initiated by a synchronous inhibitory event or by a hyperpolarizing inhibitory postsynaptic potential barrage; in contrast, HYP onset is associated with a progressive impairment of inhibition and concomitant unrestrained enhancement of excitation. Finally, in vitro optogenetic experiments show that, under comparable experimental conditions (i.e., 4-aminopyridine application), the initiation of LVF- or HYP-onset seizures depends on the preponderant involvement of interneuronal or principal cell networks, respectively. Overall, these data may provide insight to delineate better therapeutic targets in the treatment of patients presenting with MTLE and, perhaps, with other epileptic disorders as well.


Asunto(s)
Ondas Encefálicas/fisiología , Epilepsia del Lóbulo Temporal/fisiopatología , Inhibición Neural/fisiología , Convulsiones/fisiopatología , Transducción de Señal/fisiología , Potenciales Sinápticos/fisiología , Electroencefalografía , Epilepsia del Lóbulo Temporal/patología , Humanos
13.
J Neurosci ; 36(10): 3016-23, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26961955

RESUMEN

The medial septum and diagonal band of Broca (MS-DBB) has an essential role for theta rhythm generation in the hippocampus and is critical for learning and memory. The MS-DBB contains cholinergic, GABAergic, and recently described glutamatergic neurons, but their specific contribution to theta generation is poorly understood. Here, we examined the role of MS-DBB glutamatergic neurons in theta rhythm using optogenetic activation and electrophysiological recordings performed in in vitro preparations and in freely behaving mice. The experiments in slices suggest that MS-DBB glutamatergic neurons provide prominent excitatory inputs to a majority of local GABAergic and a minority of septal cholinergic neurons. In contrast, activation of MS-DBB glutamatergic fiber terminals in hippocampal slices elicited weak postsynaptic responses in hippocampal neurons. In the in vitro septo-hippocampal preparation, activation of MS-DBB glutamatergic neurons did increase the rhythmicity of hippocampal theta oscillations, whereas stimulation of septo-hippocampal glutamatergic fibers in the fornix did not have an effect. In freely behaving mice, activation of these neurons in the MS-DBB strongly synchronized hippocampal theta rhythms over a wide range of frequencies, whereas activation of their projections to the hippocampus through fornix stimulations had no effect on theta rhythms, suggesting that MS-DBB glutamatergic neurons played a role in theta generation through local modulation of septal neurons. Together, these results provide the first evidence that MS-DBB glutamatergic neurons modulate local septal circuits, which in turn contribute to theta rhythms in the hippocampus.


Asunto(s)
Glutamatos/metabolismo , Hipocampo/fisiología , Neuronas/fisiología , Optogenética , Núcleos Septales/citología , Ritmo Teta/fisiología , Animales , Animales Recién Nacidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Channelrhodopsins , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Banda Diagonal de Broca/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Potenciales de la Membrana/genética , Ratones , Vías Nerviosas/fisiología , Quinoxalinas/farmacología , Sinapsinas/genética , Sinapsinas/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
14.
Ann Neurol ; 79(3): 354-65, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26605509

RESUMEN

OBJECTIVE: Ictal events occurring in temporal lobe epilepsy patients and in experimental models mimicking this neurological disorder can be classified, based on their onset pattern, into low-voltage, fast versus hypersynchronous onset seizures. It has been suggested that the low-voltage, fast onset pattern is mainly contributed by interneuronal (γ-aminobutyric acidergic) signaling, whereas the hypersynchronous onset involves the activation of principal (glutamatergic) cells. METHODS: Here, we tested this hypothesis using the optogenetic control of parvalbumin-positive or somatostatin-positive interneurons and of calmodulin-dependent, protein kinase-positive, principal cells in the mouse entorhinal cortex in the in vitro 4-aminopyridine model of epileptiform synchronization. RESULTS: We found that during 4-aminopyridine application, both spontaneous seizure-like events and those induced by optogenetic activation of interneurons displayed low-voltage, fast onset patterns that were associated with a higher occurrence of ripples than of fast ripples. In contrast, seizures induced by the optogenetic activation of principal cells had a hypersynchronous onset pattern with fast ripple rates that were higher than those of ripples. INTERPRETATION: Our results firmly establish that under a similar experimental condition (ie, bath application of 4-aminopyridine), the initiation of low-voltage, fast and of hypersynchronous onset seizures in the entorhinal cortex depends on the preponderant involvement of interneuronal and principal cell networks, respectively.


Asunto(s)
Sincronización Cortical , Corteza Entorrinal/fisiopatología , Interneuronas , Red Nerviosa/fisiopatología , Optogenética/métodos , Convulsiones/fisiopatología , 4-Aminopiridina , Animales , Corteza Entorrinal/efectos de los fármacos , Ratones , Red Nerviosa/efectos de los fármacos , Convulsiones/inducido químicamente
15.
Front Syst Neurosci ; 9: 110, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26300744

RESUMEN

Hippocampal theta is a 4-12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens-lacunosum-moleculare (OLM) interneurons and bistratified cells (BiCs), make their contribution to network rhythms difficult to determine experimentally. We created network models that are tied to experimental work at both cellular and network levels to explore how these interneuron interactions affect the power of local oscillations. Our cellular models were constrained with properties from patch clamp recordings in the CA1 region of an intact hippocampus preparation in vitro. Our network models are composed of three different types of interneurons: parvalbumin-positive (PV+) basket and axo-axonic cells (BC/AACs), PV+ BiCs, and somatostatin-positive OLM cells. Also included is a spatially extended pyramidal cell model to allow for a simplified local field potential representation, as well as experimentally-constrained, theta frequency synaptic inputs to the interneurons. The network size, connectivity, and synaptic properties were constrained with experimental data. To determine how the interactions between OLM cells and BiCs could affect local theta power, we explored how the number of OLM-BiC connections and connection strength affected local theta power. We found that our models operate in regimes that could be distinguished by whether OLM cells minimally or strongly affected the power of network theta oscillations due to balances that, respectively, allow compensatory effects or not. Inactivation of OLM cells could result in no change or even an increase in theta power. We predict that the dis-inhibitory effect of OLM cells to BiCs to pyramidal cell interactions plays a critical role in the resulting power of network theta oscillations. Overall, our network models reveal a dynamic interplay between different classes of interneurons in influencing local theta power.

16.
Neuron ; 86(5): 1277-89, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26050044

RESUMEN

Hippocampal theta rhythm arises from a combination of recently described intrinsic theta oscillators and inputs from multiple brain areas. Interneurons expressing the markers parvalbumin (PV) and somatostatin (SOM) are leading candidates to participate in intrinsic rhythm generation and principal cell (PC) coordination in distal CA1 and subiculum. We tested their involvement by optogenetically activating and silencing PV or SOM interneurons in an intact hippocampus preparation that preserves intrinsic connections and oscillates spontaneously at theta frequencies. Despite evidence suggesting that SOM interneurons are crucial for theta, optogenetic manipulation of these interneurons modestly influenced theta rhythm. However, SOM interneurons were able to strongly modulate temporoammonic inputs. In contrast, activation of PV interneurons powerfully controlled PC network and rhythm generation optimally at 8 Hz, while continuously silencing them disrupted theta. Our results thus demonstrate a pivotal role of PV but not SOM interneurons for PC synchronization and the emergence of intrinsic hippocampal theta.


Asunto(s)
Potenciales de Acción/fisiología , Hipocampo/fisiología , Interneuronas/fisiología , Parvalbúminas/fisiología , Ritmo Teta/fisiología , Animales , Animales Recién Nacidos , Ratones , Técnicas de Cultivo de Órganos
17.
Ann Neurol ; 77(3): 541-6, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25546300

RESUMEN

Seizures in temporal lobe epilepsy can be classified as hypersynchronous and low-voltage fast according to their onset patterns. Experimental evidence suggests that low-voltage fast-onset seizures mainly result from the synchronous activity of γ-aminobutyric acid-releasing cells. In this study, we tested this hypothesis using the optogenetic control of parvalbumin-positive interneurons in the entorhinal cortex, in the in vitro 4-aminopyridine model. We found that both spontaneous and optogenetically induced seizures had similar low-voltage fast-onset patterns. In addition, both types of seizures presented with higher ripple than fast ripple rates. Our data demonstrate the involvement of interneuronal networks in the initiation of low-voltage fast-onset seizures.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Corteza Entorrinal/fisiopatología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Convulsiones/fisiopatología , 4-Aminopiridina/farmacología , Animales , Corteza Entorrinal/citología , Neuronas GABAérgicas/citología , Interneuronas/citología , Ratones , Red Nerviosa/citología , Red Nerviosa/fisiopatología , Optogenética , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp , Ácido gamma-Aminobutírico/metabolismo
18.
Nat Neurosci ; 17(10): 1362-70, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25174002

RESUMEN

Activity flow through the hippocampus is thought to arise exclusively from unidirectional excitatory synaptic signaling from CA3 to CA1 to the subiculum. Theta rhythms are important for hippocampal synchronization during episodic memory processing; thus, it is assumed that theta rhythms follow these excitatory feedforward circuits. To the contrary, we found that theta rhythms generated in the rat subiculum flowed backward to actively modulate spike timing and local network rhythms in CA1 and CA3. This reversed signaling involved GABAergic mechanisms. However, when hippocampal circuits were physically limited to a lamellar slab, CA3 outputs synchronized CA1 and the subiculum using excitatory mechanisms, as predicted by classic hippocampal models. Finally, analysis of in vivo recordings revealed that this reversed theta flow was most prominent during REM sleep. These data demonstrate that communication between CA3, CA1 and the subiculum is not exclusively unidirectional or excitatory and that reversed inhibitory theta signaling also contributes to intrahippocampal synchrony.


Asunto(s)
Potenciales Evocados/fisiología , Hipocampo/fisiología , Red Nerviosa/fisiología , Ritmo Teta/fisiología , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Estimulación Eléctrica , Femenino , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Optogenética , Parvalbúminas/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
19.
J Neurosci ; 33(19): 8276-87, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23658168

RESUMEN

Increasing evidence suggests that synchronization between brain regions is essential for information exchange and memory processes. However, it remains incompletely known which synaptic mechanisms contribute to the process of synchronization. Here, we investigated whether NMDA receptor-mediated synaptic plasticity was an important player in synchronization between septal and temporal CA3 areas of the rat hippocampus. We found that both the septal and temporal CA3 regions intrinsically generate weakly synchronized δ frequency oscillations in the complete hippocampus in vitro. Septal and temporal oscillators differed in frequency, power, and rhythmicity, but both required GABAA and AMPA receptors. NMDA receptor activation, and most particularly the NR2B subunit, contributed considerably more to rhythm generation at the temporal than the septal region. Brief activation of NMDA receptors by application of extracellular calcium dramatically potentiated the septal-temporal coherence for long durations (>40 min), an effect blocked by the NMDA antagonist AP-5. This long-lasting NMDA-receptor-dependent increase in coherence was also associated with an elevated phase locking of spikes locally and across regions. Changes in coherence between oscillators were associated with increases in phase locking between oscillators independent of oscillator amplitude. Finally, although the septal CA3 rhythm preceded the oscillations in temporal regions in control conditions, this was reversed during the NMDA-dependent enhancement in coherence, suggesting that NMDA receptor activation can change the direction of information flow along the septotemporal CA3 axis. These data demonstrate that plastic changes in communication between septal and temporal hippocampal regions can arise from the NMDA-dependent phase locking of neural oscillators.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Región CA3 Hipocampal/citología , N-Metilaspartato/metabolismo , Red Nerviosa/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Relojes Biológicos/efectos de los fármacos , Región CA3 Hipocampal/fisiología , Calcio/metabolismo , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Antagonistas de Receptores de GABA-A/farmacología , Técnicas In Vitro , Masculino , Red Nerviosa/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
20.
PLoS Biol ; 8(9)2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20927409

RESUMEN

Networks of specific inhibitory interneurons regulate principal cell firing in several forms of neocortical activity. Fast-spiking (FS) interneurons are potently self-inhibited by GABAergic autaptic transmission, allowing them to precisely control their own firing dynamics and timing. Here we show that in FS interneurons, high-frequency trains of action potentials can generate a delayed and prolonged GABAergic self-inhibition due to sustained asynchronous release at FS-cell autapses. Asynchronous release of GABA is simultaneously recorded in connected pyramidal (P) neurons. Asynchronous and synchronous autaptic release show differential presynaptic Ca(2+) sensitivity, suggesting that they rely on different Ca(2+) sensors and/or involve distinct pools of vesicles. In addition, asynchronous release is modulated by the endogenous Ca(2+) buffer parvalbumin. Functionally, asynchronous release decreases FS-cell spike reliability and reduces the ability of P neurons to integrate incoming stimuli into precise firing. Since each FS cell contacts many P neurons, asynchronous release from a single interneuron may desynchronize a large portion of the local network and disrupt cortical information processing.


Asunto(s)
Potenciales de Acción , Interneuronas/fisiología , Neocórtex/fisiología , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Calcio/metabolismo , Interneuronas/metabolismo , Ratones , Neocórtex/citología , Neocórtex/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA