Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 20(1): 680, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31462217

RESUMEN

BACKGROUND: Fermentation completion is a major prerequisite in many industrial processes involving the bakery yeast Saccharomyces cerevisiae. Stuck fermentations can be due to the combination of many environmental stresses. Among them, high temperature and ethanol content are particularly deleterious especially in bioethanol and red wine production. Although the genetic causes of temperature and/or ethanol tolerance were widely investigated in laboratory conditions, few studies investigated natural genetic variations related to stuck fermentations in high gravity matrixes. RESULTS: In this study, three QTLs linked to stuck fermentation in winemaking conditions were identified by using a selective genotyping strategy carried out on a backcrossed population. The precision of mapping allows the identification of two causative genes VHS1 and OYE2 characterized by stop-codon insertion. The phenotypic effect of these allelic variations was validated by Reciprocal Hemyzygous Assay in high gravity fermentations (> 240 g/L of sugar) carried out at high temperatures (> 28 °C). Phenotypes impacted were mostly related to the late stage of alcoholic fermentation during the stationary growth phase of yeast. CONCLUSIONS: Our findings illustrate the complex genetic determinism of stuck fermentation and open new avenues for better understanding yeast resistance mechanisms involved in high gravity fermentations.


Asunto(s)
Etanol/farmacología , Fermentación , Saccharomyces cerevisiae/genética , Temperatura , Alelos , Mapeo Cromosómico , Etanol/metabolismo , NADPH Deshidrogenasa/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Sitios de Carácter Cuantitativo , Saccharomyces cerevisiae/metabolismo , Azúcares/metabolismo , Secuenciación Completa del Genoma , Vino
2.
FEMS Yeast Res ; 9(8): 1148-60, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19758333

RESUMEN

During red wine fermentation, high temperatures may cause stuck fermentation by affecting the physiology of fermenting yeast. This deleterious effect is the result of the complex interaction of temperature with other physicochemical parameters of grape juice, such as sugar and lipid content. The genetic background of fermenting yeast also interacts with this complex matrix and some strains are more resistant to high temperatures than others. Here, the temperature tolerance of nine commercial starters was evaluated, demonstrating that, at high sugar concentrations, half of them are sensitive to temperature. Using a classical backcross approach, one thermo-sensitive commercial starter was genetically improved by introducing quantitative trait loci conferring resistance to temperature. With this breeding program it is possible to obtain a thermo-resistant strain sharing most of its genome with the initial commercial starter. The parental and improved strains were compared for population growth and fermentation ability in various conditions. Despite their common genetic background, these two strains showed slight physiological differences in response to environmental changes that enable identification of the key physiological parameters influencing stuck fermentation.


Asunto(s)
Cruzamientos Genéticos , Calor , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico , Vino/microbiología , Fermentación , Microbiología Industrial , Sitios de Carácter Cuantitativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación
3.
Int J Food Microbiol ; 108(3): 385-90, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16524635

RESUMEN

The effect of Saccharomyces cerevisiae strains on the amount of 4-mercapto-4-methylpentan-2-one, a major varietal aroma of Sauvignon blanc wines, was demonstrated by previous research work. However, the influence of different alcoholic fermentation parameters on the levels of volatile thiols (4-mercapto-4-methylpentan-2-one, 3-mercaptohexan-1-ol and 3-mercaptohexyl acetate) in wines has not yet been investigated. The impact of fermentation temperature on the final amount of volatiles thiols and on some other analytical parameters (ethanol, total acidity, residual sugars, volatile acidity) was determined in a model medium and in grape juice. Interaction between fermentation temperature and yeast strain was also tested. The fermentation temperature influenced the amount of volatile thiols irrespective of the yeast strain used. The final levels of 4MMP and 3MH in model medium and in wines were higher when the alcoholic fermentation is conducted at 20 degrees C than at 13 degrees C. The 3MHA, which was correlated with the amount of 3MH determined in wines, was also higher when the alcoholic fermentation was conducted at 20 degrees C. From a technological point of view, the choice of yeast strain and fermentation temperature has a decisive influence on the concentrations of the varietal aromas of Sauvignon blanc wines.


Asunto(s)
Microbiología Industrial , Saccharomyces cerevisiae/metabolismo , Compuestos de Sulfhidrilo/análisis , Temperatura , Vino/análisis , Fermentación , Microbiología de Alimentos , Odorantes/análisis , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...