Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Perioper Pract ; : 17504589241231197, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567871

RESUMEN

BACKGROUND: This study investigated the effectiveness of intratracheal dexmedetomidine in reducing untoward laryngeal responses in paediatrics undergoing lower abdominal surgeries. METHODS: This trial included 60 patients divided into two groups scheduled for lower abdominal surgeries. Group D were given intratracheal dexmedetomidine at a dosage of 0.5mg/kg, while Group C received intratracheal saline (0.9%). The cough severity score, the Paediatric Objective Pain Scale for pain assessment, awareness, extubation, emergence agitation score, Ramsay sedation score and adverse effects were recorded. RESULTS: There was a significant difference in the incidence of coughing severity between Groups D and C both at extubation and after five minutes of extubation (p < 0.001). The median scores of the Paediatric Objective Pain Scales and the median agitation scales of Group D were significantly lower over the first four hours (p < 0.050). The mean time to first request rescue analgesia was significantly longer in the D group than in the control group (p < 0.001). The mean total consumption of rescue analgesia in the first 24 hours postoperatively was significantly lower in the dexmedetomidine group (p < 0.050). Awareness and extubation times were comparable in both groups, and none of the subjects reported any adverse effects. CONCLUSION: In the current study, lower abdominal surgery patients who received intratracheal dexmedetomidine at a dose of 0.5mg/kg 30 minutes before the completion of the procedure experienced smooth extubation and balanced anaesthetic recovery.

2.
J Med Food ; 27(1): 60-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38150214

RESUMEN

Basil (Ocimum basilicum L.) is distributed worldwide and used in the food, pharmaceutical, and cosmetic industries. Most applications are for the herb basil, recently the basil seeds have also been used commercially; however, little is known about the nutritional and functional properties of the seeds. The present study aimed to investigate a possible protective effect of the methanol extract of O. basilicum seeds (MEOB), based on its phytochemical content, against kidney toxicity induced by CCl4 in adult rats. A single dose of CCl4 was used to induce oxidative stress in rats, which was demonstrated by a significant rise of serum enzyme markers. MEOB was administrated for 15 consecutive days (200 mg/kg body weight) to Wistar rats before CCl4 treatment and the effects on serum urea, creatinine, and uric acid, as well as the kidney superoxide dismutase, catalase, glutathione peroxidase, and glutathione activity and thiobarbituric acid reactive substances and protein carbonyl (PCO) levels were evaluated. In addition, histopathological examinations of kidneys were performed. In the positive control group, CCl4 induced an increase in serum biochemical parameters and triggered oxidative stress in the kidney. MEOB (200 mg/kg BW) resulted in significant reduction of CCl4-elevated levels of kidney markers, urea and creatinine, and a significant increase of uric acid compared with the CCl4-only group. In addition, MEOB pretreatment resulted in a significant reduction in lipid peroxidation and PCO levels in renal tissue compared with CCl4-exposed group. MEOB definitely could prevent the development of pathological changes in the kidneys. Overall, we conclude that MEOB is effective in protecting renal function from CCl4 toxicity.


Asunto(s)
Antioxidantes , Ocimum basilicum , Ratas , Animales , Antioxidantes/metabolismo , Tetracloruro de Carbono/toxicidad , Ácido Úrico/metabolismo , Creatinina , Ratas Wistar , Extractos Vegetales/química , Riñón , Estrés Oxidativo , Semillas/metabolismo , Urea/metabolismo , Urea/farmacología , Peroxidación de Lípido , Hígado/metabolismo
3.
Front Plant Sci ; 13: 925548, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325567

RESUMEN

Agricultural production is under threat due to climate change in food insecure regions, especially in Asian countries. Various climate-driven extremes, i.e., drought, heat waves, erratic and intense rainfall patterns, storms, floods, and emerging insect pests have adversely affected the livelihood of the farmers. Future climatic predictions showed a significant increase in temperature, and erratic rainfall with higher intensity while variability exists in climatic patterns for climate extremes prediction. For mid-century (2040-2069), it is projected that there will be a rise of 2.8°C in maximum temperature and a 2.2°C in minimum temperature in Pakistan. To respond to the adverse effects of climate change scenarios, there is a need to optimize the climate-smart and resilient agricultural practices and technology for sustainable productivity. Therefore, a case study was carried out to quantify climate change effects on rice and wheat crops and to develop adaptation strategies for the rice-wheat cropping system during the mid-century (2040-2069) as these two crops have significant contributions to food production. For the quantification of adverse impacts of climate change in farmer fields, a multidisciplinary approach consisted of five climate models (GCMs), two crop models (DSSAT and APSIM) and an economic model [Trade-off Analysis, Minimum Data Model Approach (TOAMD)] was used in this case study. DSSAT predicted that there would be a yield reduction of 15.2% in rice and 14.1% in wheat and APSIM showed that there would be a yield reduction of 17.2% in rice and 12% in wheat. Adaptation technology, by modification in crop management like sowing time and density, nitrogen, and irrigation application have the potential to enhance the overall productivity and profitability of the rice-wheat cropping system under climate change scenarios. Moreover, this paper reviews current literature regarding adverse climate change impacts on agricultural productivity, associated main issues, challenges, and opportunities for sustainable productivity of agriculture to ensure food security in Asia. Flowing opportunities such as altering sowing time and planting density of crops, crop rotation with legumes, agroforestry, mixed livestock systems, climate resilient plants, livestock and fish breeds, farming of monogastric livestock, early warning systems and decision support systems, carbon sequestration, climate, water, energy, and soil smart technologies, and promotion of biodiversity have the potential to reduce the negative effects of climate change.

4.
Elife ; 112022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36222666

RESUMEN

During embryonic development, the mesoderm undergoes patterning into diverse lineages including axial, paraxial, and lateral plate mesoderm (LPM). Within the LPM, the so-called intermediate mesoderm (IM) forms kidney and urogenital tract progenitor cells, while the remaining LPM forms cardiovascular, hematopoietic, mesothelial, and additional progenitor cells. The signals that regulate these early lineage decisions are incompletely understood. Here, we found that the centrosomal protein 83 (CEP83), a centriolar component necessary for primary cilia formation and mutated in pediatric kidney disease, influences the differentiation of human-induced pluripotent stem cells (hiPSCs) toward IM. We induced inactivating deletions of CEP83 in hiPSCs and applied a 7-day in vitro protocol of IM kidney progenitor differentiation, based on timed application of WNT and FGF agonists. We characterized induced mesodermal cell populations using single-cell and bulk transcriptomics and tested their ability to form kidney structures in subsequent organoid culture. While hiPSCs with homozygous CEP83 inactivation were normal regarding morphology and transcriptome, their induced differentiation into IM progenitor cells was perturbed. Mesodermal cells induced after 7 days of monolayer culture of CEP83-deficient hiPCS exhibited absent or elongated primary cilia, displayed decreased expression of critical IM genes (PAX8, EYA1, HOXB7), and an aberrant induction of LPM markers (e.g. FOXF1, FOXF2, FENDRR, HAND1, HAND2). Upon subsequent organoid culture, wildtype cells differentiated to form kidney tubules and glomerular-like structures, whereas CEP83-deficient cells failed to generate kidney cell types, instead upregulating cardiomyocyte, vascular, and more general LPM progenitor markers. Our data suggest that CEP83 regulates the balance of IM and LPM formation from human pluripotent stem cells, identifying a potential link between centriolar or ciliary function and mesodermal lineage induction.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Embarazo , Femenino , Niño , Humanos , Diferenciación Celular/fisiología , Mesodermo , Riñón/metabolismo , Linaje de la Célula , Factores de Transcripción Forkhead/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
5.
Sci Rep ; 12(1): 13210, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915211

RESUMEN

Timely and accurate estimation of rice-growing areas and forecasting of production can provide crucial information for governments, planners, and decision-makers in formulating policies. While there exists studies focusing on paddy rice mapping, only few have compared multi-scale datasets performance in rice classification. Furthermore, rice mapping of large geographical areas with sufficient accuracy for planning purposes has been a challenge in Pakistan, but recent advancements in Google Earth Engine make it possible to analyze spatial and temporal variations within these areas. The study was carried out over southern Punjab (Pakistan)-a region with 380,400 hectares devoted to rice production in year 2020. Previous studies support the individual capabilities of Sentinel-2, Landsat-8, and Moderate Resolution Imaging Spectroradiometer (MODIS) for paddy rice classification. However, to our knowledge, no study has compared the efficiencies of these three datasets in rice crop classification. Thus, this study primarily focuses on comparing these satellites' data by estimating their potential in rice crop classification using accuracy assessment methods and area estimation. The overall accuracies were found to be 96% for Sentinel-2, 91.7% for Landsat-8, and 82.6% for MODIS. The F1-Scores for derived rice class were 83.8%, 75.5%, and 65.5% for Sentinel-2, Landsat-8, and MODIS, respectively. The rice estimated area corresponded relatively well with the crop statistics report provided by the Department of Agriculture, Punjab, with a mean percentage difference of less than 20% for Sentinel-2 and MODIS and 33% for Landsat-8. The outcomes of this study highlight three points; (a) Rice mapping accuracy improves with increase in spatial resolution, (b) Sentinel-2 efficiently differentiated individual farm level paddy fields while Landsat-8 was not able to do so, and lastly (c) Increase in rice cultivated area was observed using satellite images compared to the government provided statistics.


Asunto(s)
Oryza , Agricultura , Pakistán , Imágenes Satelitales
6.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830133

RESUMEN

The primary cilium is found in most mammalian cells and plays a functional role in tissue homeostasis and organ development by modulating key signaling pathways. Ciliopathies are a group of genetically heterogeneous disorders resulting from defects in cilia development and function. Patients with ciliopathic disorders exhibit a range of phenotypes that include nephronophthisis (NPHP), a progressive tubulointerstitial kidney disease that commonly results in end-stage renal disease (ESRD). In recent years, distal appendages (DAPs), which radially project from the distal end of the mother centriole, have been shown to play a vital role in primary ciliary vesicle docking and the initiation of ciliogenesis. Mutations in the genes encoding these proteins can result in either a complete loss of the primary cilium, abnormal ciliary formation, or defective ciliary signaling. DAPs deficiency in humans or mice commonly results in NPHP. In this review, we outline recent advances in our understanding of the molecular functions of DAPs and how they participate in nephronophthisis development.


Asunto(s)
Centrosoma/metabolismo , Cilios/metabolismo , Enfermedades Renales Quísticas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Cuerpos Basales/metabolismo , Membrana Celular/metabolismo , Centriolos/metabolismo , Vesículas Citoplasmáticas/metabolismo , Humanos , Enfermedades Renales Quísticas/congénito , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA