Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Res Struct Biol ; 7: 100120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38205118

RESUMEN

Coronavirus disease-2019 (COVID-19) has become a global pandemic, necessitating the development of new medicines. In this investigation, we identified potential natural flavonoids and compared their inhibitory activity against spike glycoprotein, which is a target of SARS-CoV-2 and SARS-CoV. The target site for the interaction of new inhibitors for the treatment of SARS-CoV-2 has 82% sequence identity and the remaining 18% dissimilarities in RBD S1-subunit, S2-subunit, and 2.5% others. Molecular docking was employed to analyse the various binding processes used by each ligand in a library of 85 natural flavonoids that act as anti-viral medications and FDA authorised treatments for COVID-19. In the binding pocket of the target active site, remdesivir has less binding interaction than pectolinarin, according to the docking analysis. Pectolinarin is a natural flavonoid isolated from Cirsiumsetidensas that has anti-cancer, vasorelaxant, anti-inflammatory, hepatoprotective, anti-diabetic, anti-microbial, and anti-oxidant properties. The S-glycoprotein RBD region (330-583) is inhibited by kaempferol, rhoifolin, and herbacetin, but the S2 subunit (686-1270) is inhibited by pectolinarin, morin, and remdesivir. MD simulation analysis of S-glycoprotein of SARS-CoV-2 with pectolinarin complex at 100ns based on high dock-score. Finally, ADMET analysis was used to validate the proposed compounds with the highest binding energy.

2.
Int J Biol Macromol ; 253(Pt 5): 127073, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37774824

RESUMEN

Leishmania donovani is the causative unicellular parasite for visceral leishmaniasis (VL); and FeS proteins are likely to be very essential for their survival and viability. Cytosolic FeS cluster assembly (CIA) machinery is one of the four systems for the biosynthesis and transfer of FeS clusters among eukaryotes; Cfd1 and Nbp35 are the scaffold components for cytosolic FeS cluster biogenesis. We investigated the role of CIA machinery components and purified Cfd1 and Nbp35 proteins of L. donovani. We also investigated the interactive nature between LdCfd1 and LdNbp35 proteins by in silico analysis, in vitro co-purification, pull down assays along with in vivo immuno-precipitation; which inferred that both LdCfd1 and LdNbp35 proteins are interacting with each other. Thus, our collective data revealed the interaction between these two proteins which forms a stable complex that can be attributed to the cellular process of FeS clusters biogenesis, and transfer to target apo-proteins of L. donovani. The expression of Cfd1 and Nbp35 proteins in Amp B resistant parasites is up-regulated leading to increased amount of FeS proteins. Hence, it favors increased tolerance towards ROS level, which helps parasites survival under drug pressure contributing in Amphotericin B resistance.


Asunto(s)
Proteínas Hierro-Azufre , Leishmania donovani , Proteínas de Saccharomyces cerevisiae , Leishmania donovani/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP
4.
Curr Drug Targets ; 21(11): 1105-1129, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32321399

RESUMEN

Leishmaniasis is one of the six entities on the list of most important diseases of the World Health Organization/Tropical Disease Research (WHO/TDR). After Malaria, it is one of the most prevalent and lethal parasitic diseases. VL is the fatal form of this disease, especially if left untreated. The drugs that are currently available for the treatment of VL are expensive, toxic, or no longer effective, especially in endemic regions. Currently, no vaccine has been developed to immunize humans against VL. The major problems with the current drugs are the development of resistance and their adverse effects. Therefore, there is a strong urge to research and design drugs that have better efficacies and low toxicities as compared to current chemotherapeutic drugs. Leishmania has various enzymes involved in its metabolic pathways, which are unique to either the same genus or trypanosomatids, making them a very suitable, attractive and novel target sites for drug development. One of the significant pathways unique to trypanosomatids is the thiol metabolism pathway, which is involved in the maintenance of redox homeostasis as well as protection of the parasite in the macrophage from oxidative stress-induced damage. In this review the several pathways, their essential enzymes as well as the proposed changes in the parasites due to drug resistance have been discussed to help to understand the most suitable drug target. The thiol metabolism pathway is discussed in detail, providing evidence of this pathway being the most favorable choice for drug targeting in VL.


Asunto(s)
Leishmania/metabolismo , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/enzimología , Animales , Antiprotozoarios/farmacología , Resistencia a Medicamentos/fisiología , Humanos , Leishmania/efectos de los fármacos , Leishmaniasis Visceral/parasitología , Metabolismo/fisiología , Compuestos de Sulfhidrilo/metabolismo
5.
BMC Chem ; 13(1): 43, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31384791

RESUMEN

The increased multidrug resistance among antimalarial drugs produces the urgency of potent anti malarial to combat resistant malaria and the malaria burden worldwide. The protein which may prevent the growth or transmission of malaria parasite may be the great target for rational drug designing. Plasmodium falciparum phosphoethanolamine methyltransferase (Pfpmt) absent in human catalyzes triple methylation of ethanolamine into phosphocholine for phosphatidylcholine biosynthesis from serine decarboxylation phosphoethanolamine methyltransferase pathway for the membrane development at asexual as well as sexual stages of parasite. The Plasmodium requires production of membrane rapidly for growth and multiplication. Hence, the phosphoethanolamine methyltransferase of Plasmodium falciparum was selected as drug target for rational drug designing. Using Discovery studio 3.5 software the library of zinc compounds was screened against target and analyzed. The compounds with better druglike properties and docking affinity and binding interaction for target protein were procured for in vitro analysis against Plasmodium falciparum culture (IC50). Compounds ZINC02103914 and ZINC12882412 were found to have good druglike properties and affinity for Pfpmt also inhibited P. falciparum growth at very low µM IC50 concentration 3.0 µM and 2.1 µM respectively also found nontoxic in vitro against HEK-293 cells. Simulation study of best inhibitor revealed the specificity for the target protein. Hence, the compounds possessed the immense probability of being inhibitors of Pfpmt and may be optimized as antimalarial agent for combinational therapy to overcome the multidrug resistance and may also be used as template for optimization and rational drug designing.

6.
PLoS One ; 14(8): e0221032, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31437171

RESUMEN

INTRODUCTION: Plasmodium falciparum synthesizes phosphatidylcholine for the membrane development through serine decarboxylase-phosphoethanolamine methyltransferase pathway for growth in human host. Phosphoethanolamine-methyltransferase (PfPMT) is a crucial enzyme for the synthesis of phosphocholine which is a precursor for phosphatidylcholine synthesis and is considered as a pivotal drug target as it is absent in the host. The inhibition of PfPMT may kill malaria parasite and hence is being considered as potential target for rational antimalarial drug designing. METHODS: In this study, we have used computer aided drug designing (CADD) approaches to establish potential PfPMT inhibitors from Asinex compound library virtually screened for ADMET and the docking affinity. The selected compounds were tested for in-vitro schizonticidal, gametocidal and cytotoxicity activity. Nontoxic compounds were further studied for PfPMT enzyme specificity and antimalarial efficacy for P. berghei in albino mice model. RESULTS: Our results have identified two nontoxic PfPMT competitive inhibitors ASN.1 and ASN.3 with better schizonticidal and gametocidal activity which were found to inhibit PfPMT at IC50 1.49µM and 2.31µM respectively. The promising reduction in parasitaemia was found both in orally (50 & 10 mg/kg) and intravenous (IV) (5& 1 mg/kg) however, the better growth inhibition was found in intravenous groups. CONCLUSION: We report that the compounds containing Pyridinyl-Pyrimidine and Phenyl-Furan scaffolds as the potential inhibitors of PfPMT and thus may act as promising antimalarial inhibitor candidates which can be further optimized and used as leads for template based antimalarial drug development.


Asunto(s)
Antimaláricos/síntesis química , Inhibidores Enzimáticos/síntesis química , Malaria/tratamiento farmacológico , Metiltransferasas/antagonistas & inhibidores , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Administración Oral , Secuencia de Aminoácidos , Animales , Antimaláricos/farmacología , Sitios de Unión , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Furanos/síntesis química , Furanos/farmacología , Inyecciones Intravenosas , Malaria/parasitología , Masculino , Metiltransferasas/química , Metiltransferasas/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Pruebas de Sensibilidad Parasitaria , Fosfatidilcolinas/antagonistas & inhibidores , Fosfatidilcolinas/biosíntesis , Plasmodium berghei/enzimología , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Piridinas/síntesis química , Piridinas/farmacología , Pirimidinas/síntesis química , Pirimidinas/farmacología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
7.
J Biomol Struct Dyn ; 36(13): 3513-3530, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29039242

RESUMEN

Acid-sensing ion channels are ligand/proton-gated ion channels belonging to the family of the degenerin/epithelial Na+ channel (DEG/ENaC). They function as a sodium-selective pore for Ca2+ entry into neuronal cells during pathological conditions. The blocking of this channel has therapeutic importance, because at basal physiological pH (7.2), it is in a closed state and under a more acidic condition, and the ASIC1a ion channel is activated. To investigate the different states of the hASIC1a channel based on mutational analysis, structure-based virtual screening and molecular dynamics simulation studies. The system showed stability after 30 ns (after 1500 frame), and it was stabilized to an average value around 2.2Å. During the simulation, the ion channel residues in persistent contact with toxin PcTx1 were D237, E238, D347, D351, E219 and E355. These residues are important physiologically for the activation of the channel. From in silico alanine scanning, the significant hotspots obtained in hASIC1 are E344, P347, F352, D351, E355 and E219. From the sitemap analysis, it was evident that the sitemap found one of the active sites at the PcTx1 binding site with a site score of 1.086 and a D-score of 1.035 for hASIC1. We obtained a few promising hits and final potential hits from the virtual screening in hASIC1 that made interactions with the residues in the acidic pocket (E344, P347, F352, D351, E355 and E219). Based on these studies, the hits and scaffolds of potential therapeutic interest against various pathological conditions are associated with hASIC1a for future studies.


Asunto(s)
Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Canales Iónicos Sensibles al Ácido/metabolismo , Péptidos/farmacología , Venenos de Araña/farmacología , Canales Iónicos Sensibles al Ácido/genética , Sitios de Unión , Dominio Catalítico/efectos de los fármacos , Humanos , Simulación de Dinámica Molecular , Mutación/genética , Estructura Secundaria de Proteína/genética
8.
Parasit Vectors ; 10(1): 303, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28645315

RESUMEN

BACKGROUND: In vector-borne diseases such as leishmaniasis, the sand fly midgut is considered to be an important site for vector-parasite interaction. Digestive enzymes including serine peptidases such as trypsin and chymotrypsin, which are secreted in the midgut are one of the obstacles for Leishmania in establishing a successful infection. The presence of some natural inhibitors of serine peptidases (ISPs) has recently been reported in Leishmania. In the present study, we deciphered the role of these ISPs in the survival of Leishmania donovani in the hostile sand fly midgut environment. METHODS: In silico and co-immunoprecipitation studies were performed to observe the interaction of L. donovani ISPs with trypsin and chymotrypsin. Zymography and in vitro enzyme assays were carried out to observe the inhibitory effect of purified recombinant ISPs of L. donovani (rLdISPs) on trypsin, chymotrypsin and the sand fly midgut peptidases. The expression of ISPs in the amastigote to promastigote transition stages were studied by semi-quantitative RT-PCR and Western blot. The role of LdISP on the survival of ISP overexpressed (OE) and ISP knocked down (KD) Leishmania parasites inside the sand fly gut was investigated by in vitro and in vivo cell viability assays. RESULTS: We identified two ecotin-like genes in L. donovani, LdISP1 and LdISP2. In silico and co-immunoprecipitation results clearly suggest a strong interaction of LdISP molecules with trypsin and chymotrypsin. Zymography and in vitro enzyme assay confirmed the inhibitory effect of rLdISP on trypsin, chymotrypsin and the sand fly midgut peptidases. The expression of LdISP2 was found to be strongly associated with the amastigote to promastigote phase transition. The activities of the digestive enzymes were found to be significantly reduced in the infected sand flies when compared to uninfected. To our knowledge, our study is the first report showing the possible reduction of chymotrypsin activity in L. donovani infected sand flies compared to uninfected. Interestingly, during the early transition stage, substantial killing was observed in ISP2 knocked down (ISP2KD) parasites compared to wild type (WT), whereas ISP1 knocked down (ISP1KD) parasites remained viable. Therefore, our study clearly indicates that LdISP2 is a more effective inhibitor of serine peptidases than LdISP1. CONCLUSION: Our results suggest that the lack of ISP2 is detrimental to the parasites during the early transition from amastigotes to promastigotes. Moreover, the results of the present study demonstrated for the first time that LdISP2 has an important role in the inhibition of peptidases and promoting L. donovani survival inside the Phlebotomus argentipes midgut.


Asunto(s)
Insectos Vectores/enzimología , Leishmania donovani/fisiología , Péptido Hidrolasas/metabolismo , Psychodidae/enzimología , Inhibidores de Serina Proteinasa/fisiología , Animales , Quimotripsina/metabolismo , Bases de Datos de Proteínas , Regulación hacia Abajo , Femenino , Inmunoprecipitación , Insectos Vectores/parasitología , Leishmania donovani/genética , Masculino , Phlebotomus/enzimología , Phlebotomus/parasitología , Psychodidae/parasitología , Tripsina/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-28461317

RESUMEN

In visceral leishmaniasis (VL), the host macrophages generate oxidative stress to destroy the pathogen, while Leishmania combats the harmful effect of radicals by redox homeostasis through its unique trypanothione cascade. Leishmania donovani ascorbate peroxidase (LdAPx) is a redox enzyme that regulates the trypanothione cascade and detoxifies the effect of H2O2 The absence of an LdAPx homologue in humans makes it an excellent drug target. In this study, the homology model of LdAPx was built, including heme, and diverse compounds were prefiltered (PAINS, ADMET, and Lipinski's rule of five) and thereafter screened against the LdAPx model. Compounds having good affinity in terms of the Glide XP (extra precision) score were clustered to select diverse compounds for experimental validation. A total of 26 cluster representatives were procured and tested on promastigote culture, yielding 12 compounds with good antileishmanial activity. Out of them, six compounds were safer on the BALB/c peritoneal macrophages and were also effective against disease-causing intracellular amastigotes. Three out of six compounds inhibited recombinant LdAPx in a noncompetitive manner and also demonstrated partial reversion of the resistance property in an amphotericin B (AmB)-resistant strain, which may be due to an increased level of reactive oxygen species (ROS) and decrease of glutathione (GSH) content. However, inhibition of LdAPx in resistant parasites enhanced annexin V staining and activation of metacaspase-like protease activity, which may help in DNA fragmentation and apoptosis-like cell death. Thus, the present study will help in the search for specific hits and templates of potential therapeutic interest and therefore may facilitate the development of new drugs for combination therapy against VL.


Asunto(s)
Leishmania donovani/patogenicidad , Leishmaniasis Visceral/tratamiento farmacológico , Anfotericina B/farmacología , Antiprotozoarios/farmacología , Apoptosis/efectos de los fármacos , Ascorbato Peroxidasas/metabolismo , Humanos , Leishmania donovani/efectos de los fármacos , Leishmaniasis Visceral/parasitología , Filogenia , Especies Reactivas de Oxígeno/metabolismo
10.
Infect Genet Evol ; 45: 187-197, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27590716

RESUMEN

The Zika virus disease is an Aedes mosquito-borne disease caused by the ZIKA virus. The unavailability of vaccines or proper chemotherapeutic treatment emphasizes the need for the development of preventive and therapeutic vaccines. T cell specific epitopes have been used as vaccine candidates to generate desired immune responses against a variety of viral pathogens. Herein, the immune-informatics approach was used for the screening of potential major histocompatibility complex class I restricted epitopes, which may be competent to generate a cell-mediated immune response in humans. A total of 63 epitopes were identified, which revealed a comprehensive binding affinity to the 42 different human leukocyte antigen class I supertypes: A01, A02, A08, A23, A24, A25, A26, A29, A30, A32, A66, A68, A69, A80, B07, B08, B14, B15, B27, B35, B39, B40, B42, B45, B46, B48, B51, B53, B54, B57, B58, B83, C12, C03, C04, C05, C06, C07, C08, C12, C14, and C15, and which had no homologs in humans. By combining the human leukocyte antigen binding specificity and population coverage, nine promiscuous epitopes located in Capsid 1 Protein (MVLAILAFL(P1)), Envelop Protein (RLKGVSYSL (P2) and RLITANPVI (P3)), NS2A (AILAALTPL (P4)), NS4B (LLVAHYMYL (P5) and LVAHYMYLI (P6)) and NS5 (SLINGVVRL (P7), ALNTFTNLV (P8) and YLSTQVRYL (P9)) were shortlisted. Most of these consensus epitopes revealed 100% conservancy in all Zika virus strains and were very less conserved against the human proteome. The combination of the selected epitopes accounted for an optimal coverage in the world wide population (>99%) independent of ethnicity. Structural analysis of these selected epitopes by the PatchDock web server showed their preferential mode of presentation to the T cell receptor. All these results recommended the possibility of a combined epitope vaccine strategy and can therefore be further investigated for their immunological relevance and usefulness as vaccine candidates.


Asunto(s)
Antígenos Virales , Biología Computacional/métodos , Epítopos de Linfocito T , Virus Zika , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Humanos , Modelos Moleculares , Modelos Estadísticos , Linfocitos T Citotóxicos/inmunología , Vacunas Virales/genética , Virus Zika/genética , Virus Zika/inmunología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/prevención & control , Infección por el Virus Zika/virología
11.
Curr Pharm Biotechnol ; 17(12): 1089-1099, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27633891

RESUMEN

Glucose-1-Phosphate Thymidylyltransferase (RmlA) is one of the enzymes in rhamnose biosynthesis pathway, where rhamnose acts as linker of peptidoglycan and arabinogalacton in the cell wall, therefore RmlA is a potential enzyme for the survival of Mycobacterium tuberculosis (Mtb). To go into the depth of the structure for exploring binding regions, homology model of RmlA was built in Prime, Schrodinger v9.2. The model with lowest Discrete Optimized Potential Energy (DOPE) score of -35524.17 kcal/mol and RMSD of 0.1 Å with the template (1H5R_B) was subjected to Molecular Dynamics Simulation (MDS) for 5 ns to achieve its stable folding state. The tertiary structure of the proposed model is composed of α/ß/α sandwich type protein with quasi-Rossmann type folding pattern. The substrate, deoxy Thymidine tri phosphate (dTTP) comprises of triphosphate (R1) and methyl (R2) side chains where, R1 is highly essential for the survival of Mtb. Therefore, nineteen side chain analogues of dTTP were designed by substituting R1 and R2 chain of dTTP using Combi Glide, Schrodinger v9.2 and docked with the target RmlA protein. Out of which two analogues such as, 6-[(2R,3S,5R)-5-[5-(2- aminoethyl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl]-3-hydroxyoxolan-2 yl] hexanoic acid (COMP- 11) and 4-(2-{1-[(1S,3S,4S)-3-(5-carboxypentyl)-4-hydroxy-2-methylidenecyclopentyl]-2,4-dioxo- 1,2,3,4-tetrahydropyrimidin-5-yl}ethyl)morpholin-4-ium (COMP-12) showed the highest GLIDE score (-12.55 Kcal/mol and -11.58 Kcal/mol respectively) than that of substrate (-9.725 Kcal/mol). During simulations, hydrogen bonding profile between the two top hits and protein ranges up to 5 strong polar contacts which were much stronger than that of substrate. Similarly, the computational binding free energy of both the analogues was found to be less than -70 Kcal/mol which is much lower than that of substrate (-52.84 Kcal/mol). All these results suggest that these two compounds have more stable interaction than that of substrate inside the solvent condition and can be used as competitive inhibitors.


Asunto(s)
Mycobacterium tuberculosis/metabolismo , Nucleotidiltransferasas/química , Ligandos , Simulación de Dinámica Molecular , Nucleótidos de Timina/química
12.
J Pharm Bioallied Sci ; 8(3): 188-94, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27413346

RESUMEN

AIM: Aim of this work was to design and identify some S-adenosyl-L-homocysteine (SAH) analogs as inhibitors of S-adenosyl-L-methionine-dependent methyltransferase (MTase) protein using computational approaches. INTRODUCTION: According to the current scenario the dengue has been a global burden. The people are being killed by dengue virus in an abundant number. Despite of lot of research being going on dengue worldwide, there is no single drug which can kill its virus. This creates an urge for new drug target identification and designing. MTase has been reported as an effective target against dengue virus as it catalyzes an essential step in methylation and capping of viral RNA for viral replication. MATERIALS AND METHODS: The crystal structure of MTase in complex with SAH was used for designing new analogs of SAH. SAH analogs designed were analyzed on the basis of docking, ADMET, and toxicity analysis done using Discovery Studio 3.5. RESULTS: Seventeen analogs found noncarcinogenic, nonmutagenic, as well as good ADMET properties and good drug-like profile. CONCLUSION: These SAH analogs, inhibitors of MTase may act as drugs against dengue virus. Further synthesis and biological testing against dengue virus is under observation.

13.
Int J Biol Macromol ; 83: 78-96, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26616453

RESUMEN

Hypoxanthine Phosphoribosyltransferase (HGPRT; EC 2.4.2.8) is a central enzyme in the purine recycling pathway of all protozoan parasites. Protozoan parasites cannot synthesize purine bases (DNA/RNA) which is essential for survival as lack of de-novo pathway. Thus its good target for drug design and discovery as inhibition leads to cessation of replication. PRTase (transferase enzyme) has common PRTase type I folding pattern domain for its activities. Genomic studies revealed the sequence pattern and identified highly conserved residues that catalyzed the reaction in protozoan parasites. A recombinant protein has 24 kDa molecular mass (rLdHGPRT) was cloned, expressed and purified for testing of guanosine monophosphate (GMP) analogous compounds in-vitro by spectroscopically to the rLdHGPRT, lysates protein and MTT assay on Leishmania donovani. The predicted inhibitors of different libraries were screen into FlexX. The reported inhibitors were tested in-vitro. The 2'-deoxyguanosine 5'-diphosphate (DGD) (IC50 value 12.5 µM) is two times more effective when compared to guanosine-5'-diphosphate sodium (GD). Interestingly, LdHGPRT complex has shown stable after 24 ns in molecular dynamics simulation with interacting amino acids are Glu125, Ile127, Lys87 and Val186. QSAR studies revealed the correlation between predicted and experimental values has shown R2 0.998. Concludes that inversely proportional to their docked score with activities.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Hipoxantina Fosforribosiltransferasa/antagonistas & inhibidores , Hipoxantina Fosforribosiltransferasa/metabolismo , Leishmania donovani/enzimología , Secuencia de Aminoácidos , Clonación Molecular/métodos , Simulación por Computador , Guanosina Difosfato/metabolismo , Guanosina Monofosfato/metabolismo , Leishmania donovani/metabolismo , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
14.
Infect Genet Evol ; 36: 369-375, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26462623

RESUMEN

Cell-mediated immunity is important for the control of Ebola virus infection. We hypothesized that those HLA A0201 and HLA B40 restricted epitopes derived from Ebola virus proteins, would mount a good antigenic response. Here we employed an immunoinformatics approach to identify specific 9mer amino acid which may be capable of inducing a robust cell-mediated immune response in humans. We identified a set of 28 epitopes that had no homologs in humans. Specifically, the epitopes derived from NP, RdRp, GP and VP40 share population coverage of 93.40%, 84.15%, 74.94% and 77.12%, respectively. Based on the other HLA binding specificity and population coverage, seven novel promiscuous epitopes were identified. These 7 promiscuous epitopes from NP, RdRp and GP were found to have world-wide population coverage of more than 95% indicating their potential significance as useful candidates for vaccine design. Epitope conservancy analysis also suggested that most of the peptides are highly conserved (100%) in other virulent Ebola strain (Mayinga-76, Kikwit-95 and Makona-G3816- 2014) and can therefore be further investigated for their immunological relevance and usefulness as vaccine candidates.


Asunto(s)
Antígenos Virales/química , Antígenos Virales/inmunología , Ebolavirus/inmunología , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Fiebre Hemorrágica Ebola/inmunología , Modelos Moleculares , Linfocitos T Citotóxicos/inmunología , Alelos , Secuencia de Aminoácidos , Antígeno HLA-A2/química , Antígeno HLA-A2/genética , Antígeno HLA-A2/inmunología , Antígenos HLA-B/química , Antígenos HLA-B/genética , Antígenos HLA-B/inmunología , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/virología , Humanos , Simulación del Acoplamiento Molecular , Péptidos/química , Péptidos/inmunología , Unión Proteica/inmunología , Conformación Proteica , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...