Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 46(14): 3444-3447, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34264234

RESUMEN

We experimentally investigate the tunable Doppler shift in an 80 nm thick indium-tin-oxide (ITO) film at its epsilon-near-zero (ENZ) region. Under strong and pulsed excitation, ITO exhibits a time-varying change in the refractive index. A maximum frequency redshift of 1.8 THz is observed in the reflected light when the pump light has a peak intensity of ∼140GW/cm2 and a pulse duration of ∼580fs, at an incident angle of 40°. The frequency shift increases with the increase in pump intensity and saturates at the intensity of ∼140GW/cm2. When the pump pulse duration increases from ∼580fs to ∼1380fs, the maximum attainable frequency shift decreases from 1.8 THz to 0.7 THz. In addition, the pump energy required to saturate the frequency shift decreases with the increase in pump pulse duration for ∼x<1ps and remains unchanged for ∼x>1ps durations. Tunability exists among the pump pulse energy, duration, and incident angle for the Doppler shift of the ITO-ENZ material, which can be employed to design efficient frequency shifters for telecom applications.

2.
Nano Lett ; 21(14): 5907-5913, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34251831

RESUMEN

A time-dependent change in the refractive index of a material leads to a change in the frequency of an optical beam passing through that medium. Here, we experimentally demonstrate that this effect-known as adiabatic frequency conversion (AFC)-can be significantly enhanced by a nonlinear epsilon-near-zero-based (ENZ-based) plasmonic metasurface. Specifically, by using a 63-nm-thick metasurface, we demonstrate a large, tunable, and broadband frequency shift of up to ∼11.2 THz with a pump intensity of 4 GW/cm2. Our results represent a decrease of ∼10 times in device thickness and 120 times in pump peak intensity compared with the cases of bare, thicker ENZ materials for the similar amount of frequency shift. Our findings might potentially provide insights for designing efficient time-varying metasurfaces for the manipulation of ultrafast pulses.

3.
Opt Lett ; 45(22): 6294-6297, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33186973

RESUMEN

We experimentally demonstrate tunable optical single-sideband (SSB) generation using a tapped-delay-line (TDL) optical filter for 10 and 20 Gbit/s on/off-keying (OOK) signals and a 20 Gbit/s four-level pulse-amplitude-modulated (PAM4) signal. The optical SSB filter is realized by using an optical frequency comb, wavelength-dependent delay, and nonlinear wave-mixing to achieve the TDL function. Moreover, SSB tunability is achieved by adjusting the amplitude, phase, frequency spacing, and number of selected optical frequency comb lines. We show that the one-sideband suppression of a double-sideband (DSB) channel can be enhanced as the number of taps is increased; however, we do measure a ∼1.5% error-vector-magnitude penalty. Furthermore, we demonstrate that the chromatic-dispersion-induced penalty after 80 km standard-single-mode-fiber transmission of a 10 Gbit/s SSB OOK signal without chromatic dispersion compensation has been reduced by >3dB when compared to DSB.

4.
Appl Opt ; 59(24): 7448-7454, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32902513

RESUMEN

In this paper, we experimentally demonstrate an approach that "hides" a low-intensity 50 Gbit/s quadrature-phase-keying (QPSK) free-space optical beam when it coaxially propagates on the same wavelength with an orthogonal high-intensity 50 Gbit/s QPSK optical beam. Our approach is to coaxially transmit the strong and weak beams carrying different orthogonal spatial modes within a modal basis set, e.g., orbital angular momentum (OAM) modes. Although the weak beam has much lower power than that of the strong beam, and the beams are in the same frequency band and on the same polarization, the two beams can still be effectively demultiplexed with little inherent crosstalk at the intended receiver due to their spatial orthogonality. However, an eavesdropper may not readily identify the weak beam when simply analyzing the spatial intensity profile. The correlation coefficient between the intensity profiles of the strong beam and the combined strong and weak beams is measured to characterize the potential for "hiding" a weak beam when measuring intensity profiles. Such a correlation coefficient is demonstrated to be higher than 0.997 when the power difference between the strong fundamental Gaussian beam and the weak OAM beam is ∼8,∼10, and ∼10dB for the weak OAM -1,-2, and -3 beams, respectively. Moreover, a 50 Gbit/s QPSK data link having its Q factor above the 7% forward error correction limit is realized when the power of the weak OAM -3 beam is 30 dB lower than that of the strong fundamental Gaussian beam.

5.
Nat Commun ; 11(1): 4099, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796838

RESUMEN

Novel forms of beam generation and propagation based on orbital angular momentum (OAM) have recently gained significant interest. In terms of changes in time, OAM can be manifest at a given distance in different forms, including: (1) a Gaussian-like beam dot that revolves around a central axis, and (2) a Laguerre-Gaussian ([Formula: see text]) beam with a helical phasefront rotating around its own beam center. Here we explore the generation of dynamic spatiotemporal beams that combine these two forms of orbital-angular-momenta by coherently adding multiple frequency comb lines. Each line carries a superposition of multiple [Formula: see text] modes such that each line is composed of a different [Formula: see text] value and multiple p values. We simulate the generated beams and find that the following can be achieved: (a) mode purity up to 99%, and (b) control of the helical phasefront from 2π-6π and the revolving speed from 0.2-0.6 THz. This approach might be useful for generating spatiotemporal beams with even more sophisticated dynamic properties.

6.
Opt Lett ; 45(16): 4381-4384, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32796963

RESUMEN

We experimentally demonstrate the use of orbital angular momentum (OAM) modes as a degree of freedom to facilitate the networking functions of carrying header information and orthogonal channel coding. First, for carrying channel header information, we transmit a 10 Gb/s on-off keying (OOK) data channel as a Gaussian beam and add to it a 10 Mb/s OOK header carried by an OAM beam with the mode order ℓ=3. We recover the header and use it to drive a switch and select the output port. Secondly, for orthogonal channel coding, we configure transmitters to generate orthogonal spatial codes (orthogonal spatial beam profiles of OAM modes), each carrying an independent data stream. We measure the correlation between the OAM codes and demonstrate their use in a multiple access system carrying two 10 Gb/s OOK data channels. At the end of this Letter, we combine the concepts of using OAM modes for carrying channel header information and orthogonal channel coding in one experiment. We transmit a 10 Gb/s OOK data channel as a Gaussian beam and add to it two 10 Mb/s OOK header waveforms carried by different OAM codes. In the routing node, we recover one of the headers to drive the switch.

7.
Opt Lett ; 45(13): 3577-3580, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630903

RESUMEN

We experimentally demonstrate the utilization of adaptive optics (AO) to mitigate intra-group power coupling among linearly polarized (LP) modes in a graded-index few-mode fiber (GI FMF). Generally, in this fiber, the coupling between degenerate modes inside a modal group tends to be stronger than between modes belonging to different groups. In our approach, the coupling inside the LP11 group can be represented by a combination of orbital-angular-momentum (OAM) modes, such that reducing power coupling in OAM set tends to indicate the capability to reduce the coupling inside the LP11 group. We employ two output OAM modes l=+1 and l=-1 as resultant linear combinations of degenerate LP11a and LP11b modes inside the LP11 group of a ∼0.6-km GI FMF. The power coupling is mitigated by shaping the amplitude and phase of the distorted OAM modes. Each OAM mode carries an independent 20-, 40-, or 100-Gbit/s quadrature-phase-shift-keying data stream. We measure the transmission matrix (TM) in the OAM basis within LP11 group, which is a subset of the full LP TM of the FMF-based system. An inverse TM is subsequently implemented before the receiver by a spatial light modulator to mitigate the intra-modal-group power coupling. With AO mitigation, the experimental results for l=+1 and l=-1 modes show, respectively, that (i) intra-modal-group crosstalk is reduced by >5.8dB and >5.6dB and (ii) near-error-free bit-error-rate performance is achieved with a penalty of ∼0.6dB and ∼3.8dB, respectively.

8.
Opt Lett ; 43(22): 5563-5566, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30439896

RESUMEN

We experimentally demonstrate a scalable and reconfigurable optical tapped-delay-line (TDL) for multichannel equalization and correlation of 20-Gbaud quadrature-phase-shift-keyed (QPSK) signals using nonlinear wave mixing and a microresonator Kerr frequency comb. The optical TDL mainly consists of two stages: one being a multicasting of the original signals in a periodically poled lithium niobate (PPLN) waveguide with Kerr comb lines functioning as mutually coherent pumps, while the other is a coherent multiplexing of the delayed and weighted signal replicas in a second PPLN. A two- or three-tap optical TDL is demonstrated to simultaneously equalize a distorted QPSK data signal, reducing the error vector magnitude (EVM) from 22.5% to either 19.9% or 18.2%, and search two- or three-symbol patterns on another QPSK signal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...