Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Anat ; 239(3): 704-719, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33895988

RESUMEN

Among the cartilaginous fishes (Chondrichthyes), the Holocephali are unique in that teeth are absent both in ontogeny and adult regenerative growth. Instead, the holocephalan dentition of ever-growing nonshedding dental plates is composed of dentine, trabecular in arrangement, forming spaces into which a novel hypermineralized dentine (whitlockin) is deposited. These tissue features form a variety of specific morphologies as the defining characters of dental plates in the three families of extant holocephalans. We demonstrate how this morphology changes through ontogenetic development with continuity between morphologies, through successive growth stages of the dentition represented by the dental plate. For example, rod-shaped whitlockin appears early, later transformed into the tritoral pad, including a regular arrangement of vascular canals and whitlockin forming with increasing mineralization (95%-98%). While the tritoral pads develop lingually, stacks of individual ovoids of whitlockin replace the rods in the more labial parts of the plate, again shaped by the forming trabecular dentine. The ability to make dentine into new, distinctive patterns is retained in the evolution of the Holocephali, despite the lack of teeth forming in development of the dentition. We propose that developmentally, odontogenic stem cells, retained through evolution, control the trabecular dentine formation within the dental plate, and transition to form whitlockin, throughout lifetime growth. Our model of cellular activity proposes a tight membrane of odontoblasts, having transformed to whitloblasts, that can control active influx of minerals to the rapidly mineralizing dentine, forming whitlockin. After the reduced whitloblast cells transition back to odontoblasts, they continue to monitor the levels of minerals (calcium, phosphate and magnesium) and at a slower rate of growth in the peritubate 'softer' dentine. This model explains the unique features of transitions within the holocephalan dental plate morphology.


Asunto(s)
Dentina/anatomía & histología , Peces/anatomía & histología , Diente/anatomía & histología , Animales , Dentina/fisiología , Dentición , Peces/fisiología , Odontogénesis/fisiología
2.
Integr Comp Biol ; 60(3): 630-643, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32617556

RESUMEN

The Holocephali is a major group of chondrichthyan fishes, the sister taxon to the sharks and rays (Elasmobranchii). However, the dentition of extant holocephalans is very different from that of the elasmobranchs, lacking individual tooth renewal, but comprising dental plates made entirely of self-renewing dentine. This renewal of all tissues occurs at the postero-lingual plate surface, as a function of their statodont condition. The fossil record of the holocephalans illuminates multiple different trends in the dentition, including shark-like teeth through to those with dentitions completely lacking individual teeth. Different taxa illustrate developmental retention of teeth but with fusion in their serial development. Dentine of different varieties comprises these teeth and composite dental plates, whose histology includes vascularized tubes within coronal dentine, merging with basal trabecular dentine. In this coronal vascularized dentine, extensive hypermineralization forms a wear resistant tissue transformed into a variety of morphologies. Through evolution, hypermineralized dentine becomes enclosed within the trabecular dentine, and specialized by reduction into specific zones within a composite dental plate, with these increasing in morphological disparity, all reflecting loss of defined teeth but retention of dentine production from the inherited developmental package.


Asunto(s)
Evolución Biológica , Calcificación Fisiológica , Dentición , Peces/anatomía & histología , Diente/crecimiento & desarrollo , Animales , Peces/crecimiento & desarrollo
3.
J Fish Biol ; 97(1): 16-27, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32119120

RESUMEN

All extant holocephalans (Chimaeroidei) have lost the ability to make individual teeth, as tooth germs are not part of the embryonic development of the dental plates or of their continuous growth. Instead, a hypermineralized dentine with a unique mineral, whitlockin, is specifically distributed within a dentine framework into structures that give the dental plates their distinctive, species-specific morphology. Control of the regulation of this distribution must be cellular, with a dental epithelium initiating the first outer dentine, and via contact with ectomesenchymal tissue as the only embryonic cell type that can make dentine. Chimaeroids have three pairs of dental plates within their mouth, two in the upper jaw and one in the lower. In the genera Chimaera, Hydrolagus and Harriotta, the morphology and distribution of this whitlockin within each dental plate differs both between different plates in the same species and between species. Whitlockin structures include ovoids, rods and tritoral pads, with substantial developmental changes between these. For example, rods appear before the ovoids and result from a change in the surrounding trabecular dentine. In Harriotta, ovoids form separately from the tritoral pads, but also contribute to tritor development, while in Chimaera and Hydrolagus, tritoral pads develop from rods that later are perforated to accommodate the vasculature. Nevertheless, the position of these structures, secreted by the specialized odontoblasts (whitloblasts), appears highly regulated in all three species. These distinct morphologies are established at the aboral margin of the dental plate, with proposed involvement of the outer dentine. We observe that this outer layer forms into serially added lingual ridges, occurring on the anterior plate only. We propose that positional, structural specificity must be contained within the ectomesenchymal populations, as stem cells below the dental epithelium, and a coincidental occurrence of each lingual, serial ridge with the whitlockin structures that contribute to the wear-resistant oral surface.


Asunto(s)
Tiburones/anatomía & histología , Tiburones/crecimiento & desarrollo , Diente/crecimiento & desarrollo , Animales , Dentina , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA