Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Tissue Cell ; 82: 102072, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36934683

RESUMEN

BACKGROUND: Ovarian cancer is the most lethal gynaecological malignancy. Damage specific DNA-binding protein 1 (DDB1) functions in nucleotide-excision repair and has been reported to be involved in cancer development. In this study, we aimed to determine the expression levels of DDB1 and their association with the clinical outcomes of patients with ovarian cancer. METHODS: Tissue arrays were performed on 54 epithelial ovarian cancer (EOC) samples. Immunohistochemistry was performed to determine DDB1 expression. DDB1 expression levels among different EOC subtypes were analysed via one-way analysis of variance using SPSS Statistics 19.0. Correlation between DDB1 expression and chemotherapy course/progression-free survival (PFS) of patients was determined via Kaplan-Meier survival analysis using GraphPad Prism 5. Moreover, knockdown of DDB1 in ovarian cancer cells ES2 and OVCAR3 was used to preliminarily validate the role of DDB1. RESULTS: DDB1 was detected in the cytoplasm, especially in the nucleus, of all subtypes of EOC. However, DDB1 expression levels were significantly different between clear cell carcinoma and low-grade serous carcinoma (P = 0.022) and clear cell carcinoma and endometrioid cancer (P = 0.016). In addition, DDB1 expression was not significantly correlated with chemotherapy course (P = 0.433) or PFS (P = 0.566). High expression levels of DDB1 were correlated with significantly worse overall survival (P = 0.017) in patients with EOC. In addition, DDB1 knockdown in ovarian cancer cells decreased their proliferation in vitro. CONCLUSION: Our results revealed that DDB1 expression is heterogeneous in ovarian cancer, suggesting its use as a potential biomarker for poor survival in ovarian cancer.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Línea Celular Tumoral , Proteínas de Unión al ADN/genética
2.
J Cell Biochem ; 120(5): 7581-7589, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30444026

RESUMEN

To determine how the lncRNA FER1L4 in ovarian cancer cells influences paclitaxel (PTX) resistance, we examined the expression level of FER1L4 in human ovarian epithelial cell lines IOSE80 and HOSEpiC and human ovarian cancer cell lines OVCAR-3, Caov-3, and SKOV3 through RNA isolation and quantitative polymerase chain reaction (qRT-PCR). SKOV3 cell lines were treated with PTX. The cell survival rate and apoptosis rate of SKOV3 and SKOV3-PR at different PTX dose levels were evaluated. Next, qRT-PCR was performed to detect the expression of FER1L4 in SKOV3 and SKOV3-PR cell lines. SKOV3-PR cell lines were transfected with pcDNA3.1 as the control group (SKOV3-PR/pcDNA3.1) or pcDNA3.1-FER1L4 to upregulate the expression level of FER1L4 (SKOV3-PR/pcDNA3.1-FER1L4). The level of cell survival, apoptosis, and colony formation were compared between the two groups using MTT, flow cytometry analysis, and colony formation assay. To reveal the molecular mechanism, we measured the relative protein phosphorylation level of ERK and MAPK in SKOV3, SKOV3-PR, SKOV3-PR/pcDNA3.1, and SKOV3-PR/pcDNA3.1-FER1L4 groups using an enzyme-linked immunosorbent assay. The effects of SB203580 (a p38 MAPK inhibitor) on PTX were also investigated to reveal the function of the MAPK pathway on the PTX tolerance of SKOV3. In comparison with normal ovarian epithelial cells, FER1L4 was downregulated. The FER1L4 level was decreased in human ovarian cancer cells with drug resistance than in common ovarian cancer cells. The upregulation of FER1L4 could promote the PTX sensitivity of ovarian cancer cells. The increased level of FER1L4 could suppress the PTX resistance of ovarian cancer cells through the inhibition of the MAPK signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...