RESUMEN
This study aimed to investigate the characteristics of different varieties of camellia oils and their diacylglycerol (DAG)-enriched derivatives in terms of triacylglycerol (TAG) species, bioactive components, volatile compounds, and antioxidant activity. Six types of camellia oils, including C. oleifera (C.O), C. semiserrata (C.S), C. gauchowensis (C.G), along with commercially refined C. oleifera oil (C-C.O) and its DAG-enriched counterparts (at 40% and 80% enrichment), were analyzed and compared. Unique patterns of TAG profiles, fatty acid distributions on different glycerol backbones, tocopherol, squalene, total polyphenols, and volatile compounds were observed, suggesting that these characteristics can be utilized as a criterion to differentiate them. DAG-enriched oils exhibited increased levels of unsaturated fatty acids (UFAs) compared to C-C.O, albeit with decreased contents of tocopherol, squalene, and total polyphenols. Moreover, diverse volatile compounds were identified across all types of camellia oils, among which the DAG-enriched oils had distinct distribution characteristics compared with their crude oils, indicating the influence of the enrichment process on volatile compounds. Furthermore, DAG-enriched oils demonstrated reduced antioxidant activity abilities compared to their counterparts, with the highest activity observed in C.O, followed by C.G. Additionally, strong correlations were observed between antioxidant activity and tocopherol, as well as squalene content.
RESUMEN
With fast advances in enhancing the focusing/imaging resolution of Fresnel zone plate lenses toward sub-10â nm, low diffraction efficiency in connection with their rectangular zone shape still remains a big issue in both soft and hard X-ray microscopy. In hard X-ray optics, encouraging progress has recently been reported in our earlier attempts of high focusing efficiency by 3D kinoform shaped metallic zone plates, formed by greyscale electron beam lithography. This paper addresses our efforts towards high focusing/imaging efficiency by developing a novel dielectric kinoform zone plate lens for soft X-rays. The effects of the zone materials and zone shapes on the focusing/imaging quality were first theoretically investigated by a modified thin-grating-approximation method, revealing superior efficiencies of dielectric kinoform zone plates over rectangular ones in metals. Optical characterizations of replicated dielectric kinoform zone plates by greyscale electron beam lithography demonstrate a focusing efficiency of 15.5% with a resolution of 110â nm in the water window of X-rays. Apart from high efficiency, the novel kinoform zone plate lenses developed in this work exhibit significant advantages over conventional zone plates, i.e. simplified process, low cost and no need for a beamstop.
RESUMEN
X-ray microscope as an important nanoprobing tool plays a prevailing role in nano-inspections of materials. Despite the fast advances of high resolution focusing/imaging reported, the efficiency of existing high-resolution zone plates is mostly around 5% in soft x-ray and rapidly goes down to 1%-2% when the resolution approaches 10 nm. It is well known that the rectangular zone shape, beamstop, limited height/width ratios, material absorption of light and structural defects are likely responsible for the limited efficiency. Although zone plates with Kinoform profile are supposed to be efficient, progress for achieving both high resolution (<30 nm) and high efficiency (>5%) have hardly been addressed in soft x-ray. In this work, we propose a compound Kinoform/Fresnel zone plate (CKZP) by combing a dielectric Kinoform zone plate with a 15 nm resolution zone plate. Greyscale electron beam lithography was applied to form the 3D Kinoform zone plate and atomic layer deposition was carried out to form the binary zone plate. Optical characterizations demonstrated 15 nm resolution focusing/imaging with over 7.8% efficiency in soft x-ray. The origin of the efficiency improvement behind the proposed compound lens is theoretically analyzed and discussed.
RESUMEN
X-ray microscopes are powerful tools in the nano-inspection of materials owing to their ultra-high resolution at the molecular level. However, the focusing efficiency of binary zone plate lenses as key components in such probes is merely 5% in practice, hindering their application in advanced scientific research. Although kinoform zone plate lenses are in principle supposed to possess high efficiency beyond binary ones, little progress has been reported so far due to the shortage of both a theoretical calculation approach and greyscale lithography for generating fine three-dimensional (3D) kinoform zones of the lenses. This paper reports our theoretical work for a modified beam propagation method to compute the focusing performance and state-of-the-art 3D greyscale electron beam lithography for kinoform zone plate lenses. Three different zone shapes - binary, kinoform and top-flat kinoform (nicknamed the trapezoid-kinoform) - were compared both theoretically and experimentally. Theoretical calculations suggest, for the first time, that the trapezoid-kinoform zone plate gives rise to the highest focusing efficiency among the three lenses, which was proved by optical characterization of the fabricated lens with hard X-rays. As high as 40% of the focusing efficiency by Au trapezoid-kinoform lenses with resolution of 250â nm at 8â keV has been achieved, which is two times higher than that of binary zone plate lenses. The origin of the enhanced efficiency in the trapezoid-kinoform zone plate lens was explained by the joint contributions from both the refraction through the kinoform slope and the diffraction through the top flat part of the trapezoid-kinoform zone plate. Such a breakthrough in focusing efficiency sheds light on the further development of X-ray lenses with both high resolution and high efficiency.
RESUMEN
For acquiring high-contrast and high-brightness images in hard-x-ray optics, Fresnel zone plates with high aspect ratios (zone height/zone width) have been constantly pursued. However, knowledge of aspect ratio limits remains limited. This work explores the achievable aspect ratio limit in polymethyl methacrylate (PMMA) by electron-beam lithography (EBL) under 100 keV, and investigates the lithographic factors for this limitation. Both Monte Carlo simulation and EBL on thick PMMA are applied to investigate the profile evolution with exposure doses over 100 nm wide dense zones. A high-resolution scanning electron microscope at low acceleration mode for charging free is applied to characterize the resultant zone profiles. It was discovered for what we believe is the first time that the primary electron-beam spreading in PMMA and the proximity effect due to extra exposure from neighboring areas could be the major causes of limiting the aspect ratio. Using the optimized lithography condition, a 100 nm zone plate with aspect ratio of 15/1 was fabricated and its focusing property was characterized at the Shanghai Synchrotron Radiation Facility. The aspect ratio limit found in this work should be extremely useful for guiding further technical development in nanofabrication of high-quality Fresnel zone plates.
RESUMEN
One of the main hurdles for nanometer focusing by a bending mirror lies in the theoretical surface errors by its approximations used for the traditional theory. The impacts of approximations and analytical corrections have been discussed, and the elliptically bent mirror theory has been described during exact mathematical analysis without any approximations. These approximations are harmful for the focusing system with bigger grazing angle, bigger mirror length, and bigger numerical aperture. The properties of equal-moment and single-moment bent mirrors have been described and discussed. Because of its obvious advantages, a single-moment bending mirror has high potential ability for nanometer focusing.
RESUMEN
INTRODUCTION: In this study, a nanoemulsion system (LE) was investigated for intravenous delivery of diallyl trisulfide (DT), which was a lipophilic and venous irritant drug for systemic therapy of bacterial and fungal infection. METHODS: Egg phospholipid was chosen as the only emulsifier, soybean oil, medium chain triglyceride (MCT), and olive oil were used as the oil phases, forming stable DT LEs (o/w) with small particle sizes. The venous irritation of DT LEs was evaluated by in vitro human umbilical cord endothelial cells (HUV-EC CRL 1730) tolerance model with the intracellular ATP and GTP concentrations as the indices. RESULTS: The intracellular ATP and GTP reduction changed with the incorporation of a variety of oils, which were strongly related with the free DT concentration of DT LEs. DISCUSSION: It was deduced that the free DT concentrations of LEs made of various oils depended on the particle sizes of the DT LEs. In conclusion, the oil phases modulated the free DT concentrations by forming DT LEs with different particle sizes, and optimization of the oil phase was an effective method to alleviate the venous irritation of DT LEs.
Asunto(s)
Compuestos Alílicos/administración & dosificación , Compuestos Alílicos/química , Emulsiones Grasas Intravenosas/administración & dosificación , Emulsiones Grasas Intravenosas/química , Sulfuros/administración & dosificación , Sulfuros/química , Compuestos Alílicos/efectos adversos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Emulsiones Grasas Intravenosas/efectos adversos , Humanos , Infusiones Intravenosas , Irritantes/administración & dosificación , Irritantes/efectos adversos , Irritantes/química , Lípidos , Aceites , Tamaño de la Partícula , Sulfuros/efectos adversosRESUMEN
Triptolide (TP), a major active and toxic component of Tripterygium wilfordii, is reported to be converted into four mono-hydroxylated metabolites (m/z 375) by cytochrome P450 (CYP) in vitro, and CYP3A4 was the primary isoform responsible for its hydroxylation. Dexamethasone (DXM), a CYP3A inducer, is frequently combined with TP in clinical therapy. However, the effects of DXM on the metabolism and toxicity of TP are unknown. In this study, the metabolism of TP was investigated in rat liver microsomes pretreated with DXM. The metabolic profile of TP was significantly altered. The V(max) was about 9.58-fold higher than that of vehicle group and the K(m) was about 3.57-fold higher. With DXM, the amount of metabolite M3 was significantly higher than that with no DXM while M1 and M2 were not found, and a new metabolite (m/z 391) was observed. The liver and the kidney toxicity of TP on rat pretreated with DXM were evaluated. We observed that pretreatment with DXM protected against TP hepatotoxicity. No obvious nephrotoxicity was detected on rats treated with TP, whereas the kidney damage was observed in DXM group and the level of toxicity was much reduced with DXM-TP group. This suggested that TP might decrease nephrotoxicity induced by DXM. These studies indicated that DXM had significant impact on the metabolism and the toxicity of TP as a therapeutic agent.
Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Dexametasona/farmacología , Diterpenos/toxicidad , Fenantrenos/toxicidad , Animales , Biomarcadores/sangre , Sistema Enzimático del Citocromo P-450/metabolismo , Dexametasona/química , Diterpenos/química , Diterpenos/metabolismo , Compuestos Epoxi/química , Compuestos Epoxi/metabolismo , Compuestos Epoxi/toxicidad , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Fenantrenos/química , Fenantrenos/metabolismo , Ratas , Ratas Wistar , Compuestos de Sulfhidrilo/metabolismoRESUMEN
In this study, a nanoemulsion (NE) system was investigated for intravenous delivery of lipophilic and venous irritant drugs. NEs were prepared to deliver diallyl trisulfide (DT) for systemic therapy of bacterial and fungal infection, egg phospholipid was chosen as the main emulsifier, and two co-emulsifiers were also incorporated, including Poloxamer 188 (P188) and Solutol HS 15 (S15). Soybean oil was used as the dispersed phases, forming stable DT NEs with small particle sizes. The venous irritation of DT NEs was evaluated by in vitro human umbilical cord endothelial cells (CRL 1730) compatibility model with the intracellular adenosine triphosphate (ATP) and guanosine triphosphate (GTP) concentrations as the indices. The intracellular ATP and GTP reduction changed with the incorporation of a variety of co-emulsifiers, which varied in a free DT concentration-dependent manner. It was deduced that the free DT concentrations of NEs containing co-emulsifiers were determined by the partition coefficient of DT between oil and surfactant buffer solution. In conclusion, NE was an appropriate delivery system for lipophilic and venous irritant drug, and optimization of the composition of emulsifiers was an effective method to alleviate the venous irritation of DT NEs.
Asunto(s)
Vasos Sanguíneos/patología , Emulsiones/química , Emulsiones/toxicidad , Irritantes , Adenosina Trifosfato/metabolismo , Células Cultivadas , Cromatografía Líquida de Alta Presión , Sistemas de Liberación de Medicamentos , Electroquímica , Células Endoteliales/efectos de los fármacos , Guanosina Trifosfato/metabolismo , Humanos , Lípidos/química , Nanopartículas , Aceites/química , Tamaño de la Partícula , Poloxámero , Polietilenglicoles/química , Ácidos Esteáricos/química , TensoactivosRESUMEN
In this work, a hydrogel-thickened nanoemulsion system (HTN) with powerful permeation ability, good stability and suitable viscosity was investigated for topical delivery of active molecules. HTN was prepared to deliver an oily mixture of 5% camphor, 5% menthol and 5% methyl salicylate for topical therapy of arthritis, minor joint and muscle pain using soybean oil as the oil phase, soybean lecithin, Tween 80 and poloxamer 407 as the surfactants, propylene glycol as the cosurfactant, carbomer 940 as a thickening agent. The HTN system was found to combine the o/w microstructure of nanoemulsion with the gel network of hydrogel and had a suitable viscosity of 133.2PaS. The system had small average diameters and good long-term stability. The abilities of HTN to deliver the high amounts of camphor, menthol and methyl salicylate were evaluated using the in vitro permeation studies. The permeation rates of camphor, menthol and methyl salicylate from the optimal HTN formulation were 138.0+/-6.5, 63.6+/-3.3, 53.8+/-3.2 microg cm(-2) h(-1) and showed the significant advantages over the control gel. The HTN with good stability and powerful permeation enhancing ability and suitable viscosity might be a promising prospective carrier for topical delivery of lipophilic drugs.