Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(7): 10723-10731, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473032

RESUMEN

Precise information of positions and sizes of atom clouds is required for atom-interferometry-based G measurements. In this work, characterizing atom clouds using a charge-coupled device (CCD) is presented. The parameters of atom clouds are extracted from fluorescence images captured by the CCD. For characterization, in-situ calibration of the magnification of the imaging system is implemented using the free-fall distance of atom clouds as the dimension reference. Moreover, influence of the probe beam on measuring the positions of atom clouds is investigated, and a differential measurement by reversing the direction of the probe beam is proposed to suppress the influence. Finally, precision at sub-mm level for characterizing atom clouds is achieved.

2.
Rev Sci Instrum ; 92(5): 053202, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243337

RESUMEN

As part of a program to determine the gravitational constant G using multiple independent methods in the same laboratory, an atom gravity gradiometer is being developed. The gradiometer is designed with two magneto-optical traps to ensure both the fast simultaneous launch of two atomic clouds and an optimized configuration of source masses. Here, the design of the G measurement by atom interferometry is detailed, and the experimental setup of the atom gravity gradiometer is reported. A preliminary sensitivity of 3 × 10-9 g/Hz to differential gravity acceleration is obtained, which corresponds to 99 E/Hz (1 E = 10-9 s-2) for the gradiometer with a baseline of 0.3 m. This provides access to measuring G at the level of less than 200 parts per million in the first experimental stage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...