Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1284268, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529186

RESUMEN

Background: The hypoglycemic effects of Chinese bayberry leaves proanthocyanidins (BLPs) have been demonstrated. It is unclear, nevertheless, whether BLPs reduced postprandial blood glucose levels by regulating glucose uptake and glucose transport. Method: This study investigated the effect of BLPs (25, 50, and 100 µg/mL) on glucose uptake and glucose transport in human intestinal epithelial cells (Caco-2 cells). The uptake of 2-Deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose (2-NBDG) and disaccharidases activity in Caco-2 cells were measured. The glucose transport ability across the cell membrane was determined using the established Caco-2 monolayer model. The transcript and protein levels of key glucose transporters were analyzed using real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively. Results: The results showed that BLPs significantly decreased glucose uptake and disaccharidases activity (p < 0.05). Otherwise, BLPs treatment obviously inhibited glucose transport across the Caco-2 monolayer in both simulated-fast (5 mM glucose) and simulated-fed (25 mM glucose) conditions. It was attributed to the suppression of glucose transporter2 (GLUT2) and sodium-dependent glucose cotransporter 1 (SGLT1) by BLPs. BLPs were found to significantly downregulated the transcript level and protein expression of glucose transporters (p < 0.05). Meanwhile, the mRNA expression of phospholipase C (PLC) and protein kinase C (PKC) involved in the signaling pathway associated with glucose transport were decreased by BLPs. Conclusion: These results suggested that BLPs inhibited intestinal glucose transport via inhibiting the expression of glucose transporters. It indicated that BLPs could be potentially used as a functional food in the diet to modulate postprandial hyperglycemia.

2.
Front Cell Infect Microbiol ; 13: 1238543, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094745

RESUMEN

COVID-19 is a disease caused by a virus named SARS-CoV-2. SARS-CoV-2 is a single-stranded positive-sense RNA virus. Reverse transcription quantitative PCR (RT-qPCR) assays are the gold standard molecular test for detection of RNA viruses. The aim of this study was to construct an RNA-positive control based on MS2 phage-like particles (MS2 VLPs) to detect SARS-CoV-2 RNA. pCDFDuet-1 was used as a one-plasmid double-expression system to construct MS2 VLPs containing ssRNA of SARS-CoV-2. The sequence encoding one copy of maturase, His-tag and coat protein dimer was cloned and inserted into MCS1 of the plasmid; the fragment encoding protein N and ORF1ab from SARS-CoV-2 was cloned and inserted into MCS2. The prepared plasmid was transformed into Escherichia coli strain BL2 (DE3), and expression of the construct was induced by 1 mM isopropyl-L-thio-D-galactopyranoside (IPTG) at 30°C for 12 hours. MS2 VLPs were purified and collected with Ni-NTA affinity chromatography columns. The size and shape of the MS2 VLPs were verified by transmission electron microscopy, and the stability of MS2 VLP packaged RNA was evaluated by treatment with RNase A. Effects of storage temperature and buffer on MS2 VLP stability were also investigated. The results showed that SARS-CoV-2 MS2 VLPs could be successfully produced by this one-plasmid double-expression system. MS2 VLPs showed high stability and may be used as a positive control in molecular diagnosis of COVID-19.


Asunto(s)
COVID-19 , ARN Viral , Humanos , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Plásmidos/genética , Reacción en Cadena de la Polimerasa
3.
Vaccines (Basel) ; 11(8)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37631863

RESUMEN

The Group ACYW135 meningococcal polysaccharide vaccine (MPV-ACYW135) is a classical common vaccine used to prevent Neisseria meningitidis serogroups A, C, Y, and W135, but studies on the vaccine at the transcriptional level are still limited. In the present study, mRNAs and lncRNAs related to immunity were screened from the spleens of mice inoculated with MPV-ACYW135 and compared with the control group to identify differentially expressed mRNAs and lncRNAs in the immune response. The result revealed 34375 lncRNAs and 41321 mRNAs, including 405 differentially expressed (DE) lncRNAs and 52 DE mRNAs between the MPV group and the control group. Results of GO and KEGG enrichment analysis turned out that the main pathways related to the immunity of target genes of those DE mRNAs and DE lncRNAs were largely associated with positive regulation of T cell activation, CD8-positive immunoglobulin production in mucosal tissue, alpha-beta T cell proliferation, negative regulation of CD4-positive, and negative regulation of interleukin-17 production, suggesting that the antigens of MPV-ACYW135 capsular polysaccharide might activate T cell related immune reaction in the vaccine inoculation. In addition, it was noted that Bach2 (BTB and CNC homolog 2), the target gene of lncRNA MSTRG.17645, was involved in the regulation of immune response in MPV-ACYW135 vaccination. This study provided a preliminary catalog of both mRNAs and lncRNAs associated with the proliferation and differentiation of body immune cells, which was worthy of further research to enhance the understanding of the biological immune process regulated by MPV-ACYW135.

4.
Int J Biol Macromol ; 248: 125935, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37482168

RESUMEN

The effect of proanthocyanidins (PAs) from Chinese bayberry leaves (BLPs), grape seeds (GSPs), peanut skins (PSPs) and pine barks (PBPs) on physicochemical properties, structure and in-vitro digestibility of gelatinized maize starch was investigated. The results showed that all PAs remarkably retarded starch digestibility, meanwhile, BLPs highlighted superiority in increasing resistant starch content from 31.29 ± 1.12 % to 68.61 ± 1.15 %. The iodine-binding affinity analysis confirmed the interaction between PAs and starch, especially the stronger binding of BLPs to amylose, which was driven by non-covalent bonds supported by XRD and FT-IR analysis. Further, we found that PAs altered the rheological properties, thermal properties and morphology structure of starch. In brief, PAs induced larger consistency, poorer flow ability, lower gelatinization temperatures and melting enthalpy change (ΔH) of starch paste. SEM and CLSM observation demonstrated that PAs facilitated starch aggregation. Our results indicated that PAs especially BLPs could be considered as potential additives to modify starch in food industry.


Asunto(s)
Proantocianidinas , Proantocianidinas/química , Zea mays/química , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/química , Amilosa/química
6.
Anim Biotechnol ; 34(9): 4927-4937, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37199180

RESUMEN

This study was to investigate the correlations of myogenic differentiation 1 (MYOD1) gene polymorphisms with carcass traits and its expression with breast muscle development in pigeons. Four SNPs were found in the pigeon MYOD1 gene. Correlation analysis showed that individuals with AA genotype at both SNPs g.2967A > G (p < .01) and g.3044G > A (p < .05) have significantly higher live weight (LW), carcass weight (CW), semi-eviscerated weight (SEW), eviscerated weight (EW) and breast muscle weight (BMW). Moreover, the two SNPs also had the same significant effects on MYOD1 mRNA expression levels in breast muscle of pigeons, ie, the AA genotype showed higher MYOD1 mRNA expression levels. The diameter and cross-section area of muscle fibers continuously increased from 0w to 4w (p < .05), accompanied with the increasing expression of MYOD1 gene, while the density decreased (p < .05) dramatically from 0w to 1w and continuously fell over in the next few weeks (p > .05). What's more, the expression level of MYOD1 gene was positively correlated with a diameter (r = 0.937, p < .05) and cross-sectional area (r = 0.956, p < .01) of myofiber, and negatively correlated with density (r = -0.769, p < .01). The results showed that individuals with AA genotype at both SNPs g.2967A > G and g.3044G > A have showed higher carcass traits (LW, CW, SEW, EW, and BMW) and higher MYOD1 mRNA expression level in breast muscle than AB and BB genotypes. Moreover, the expression level of MYOD1 gene was closely correlated with muscle characteristic traits, indicating variants of MYOD1 gene was closely related to muscle development and could be a potential candidate gene in marker-assisted selection of pigeons.


Asunto(s)
Columbidae , Carne , Humanos , Animales , Columbidae/genética , Fenotipo , Genotipo , Músculos , ARN Mensajero , Polimorfismo de Nucleótido Simple/genética
7.
Vaccines (Basel) ; 11(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36992112

RESUMEN

The 23-valent pneumococcal vaccine (PPV23) is a classical common vaccine used to prevent pneumococcal disease. In past decades, it was thought that vaccination with this vaccine induces humoral immunity, thereby reducing the disease associated with infection with 23 common serotypes of Streptococcus pneumoniae (Sp). However, for this polysaccharide vaccine, the mechanism of immune response at the transcriptional level has not been fully studied. To identify the lncRNAs (long noncoding RNAs) and mRNAs in spleens related to immunity after PPV23 vaccination in mice, high-throughput RNA sequencing of spleens between a PPV23 treatment group and a control group were performed and evaluated in this study. The RNA-seq results identified a total of 41,321 mRNAs and 34,375 lncRNAs, including 55 significantly differentially expressed (DE) mRNAs and 389 DE lncRNAs (p < 0.05) between the two groups. GO and KEGG annotation analysis indicated that the target genes of DE lncRNAs and DE mRNAs were related to T-cell costimulation, positive regulation of alpha-beta T-cell differentiation, the CD86 biosynthetic process, and the PI3K-Akt signaling pathway, indicating that the polysaccharide component antigens of PPV23 might activate a cellular immune response during the PPV23 immunization process. Moreover, we found that Trim35 (tripartite motif containing 35), a target gene of lncRNA MSTRG.9127, was involved in regulating immunity. Our study provides a catalog of lncRNAs and mRNAs associated with immune cells' proliferation and differentiation, and they deserve further study to deepen the understanding of the biological processes in the regulation of PPV23 during humoral immunity and cellular immunity.

8.
Front Nutr ; 9: 1038451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36245511

RESUMEN

[This corrects the article DOI: 10.3389/fnut.2021.748503.].

11.
Front Pharmacol ; 13: 1008580, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188544

RESUMEN

Bayberry leaves proanthocyanidins (BLPs) were distributed in natural plant food, considered to have the potential for metabolic syndrome. In this study, we raised Drosophila melanogaster on high sugar diet (HSD) from the egg stage to induce hyperglycemia, and the ameliorative effect of BLPs was assessed based on this model. Phenotypical, biochemical, and molecular analyses related to diabetes mellitus pathogenesis were measured. Flies exposed to BLPs were found to suppress the HSD-induced high glucose and high triglycerides levels. Moreover, BLPs showed an inhibitory effect on carbohydrate digestive enzymes (α-amylase and α-glucosidase) activity and mRNA expression, exhibiting the potential for carbohydrate digestion retardation. Transcriptional levels of key genes associated with glycolipid metabolism were further evaluated, including dilp, InR, and downstream dAKT-dFOXO-PEPCK, together with E78, SREBP, FAS, and LSD genes, were all downregulated after BLPs-exposure, suggesting the ameliorative effect of BLPs on dysbiosis associated with the insulin signaling pathway. This study provided a new functional compound, which is beneficial to further antidiabetic therapy studies.

12.
Front Vet Sci ; 9: 847363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35754541

RESUMEN

Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step in triglyceride synthesis and plays an important role in the synthesis of fat, but the effects of its expression on intramuscular fat (IMF) content and muscle development are still unknown. In this study, we investigated the expression of the DGAT2 gene and its associations with IMF content and breast muscle fiber characteristics in pigeons. The spatiotemporal expression profile of the pigeon DGAT2 gene in breast muscle showed that the mRNA expression level of DGAT2 gene in subcutaneous fat was the highest (p < 0.01) among eight tissues from 0 to 4 weeks of age, and showed an upward trend week by week, followed by liver (p < 0.05). Moreover, both mRNA and protein levels of the DGAT2 gene in breast muscle showed an upward trend from 0 to 4 weeks (p < 0.05), accompanied by the upregulation of MYOD1 and MSTN. In addition, the paraffin section analysis results revealed that the diameter and cross-sectional area of pectoralis muscle fiber significantly increased with age (p < 0.05), and a significant positive correlation was shown between the DGAT2 gene expression level and muscle fiber diameter (p < 0.05). Furthermore, correlation analysis suggested that the mRNA expression level of the pigeon DGAT2 gene was significantly (p < 0.01) correlated with IMF content in breast muscle. These results imply that the DGAT2 gene has a close relationship with IMF content and breast muscle fiber characteristics in pigeons, indicating that the DGAT2 gene might be used as a candidate gene marker-assisted breeding in pigeons.

13.
Animals (Basel) ; 12(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35565488

RESUMEN

The improvements in muscle growth rate and meat quality are the major breeding aims in pigeon industry. Liver and muscle are recognized as important sites for fatty acid metabolism; understanding the role of specific transcripts in the breast muscle and liver might lead to the elucidation of interrelated biological processes. In this study, RNA-Sequencing (RNA-Seq) was applied to compare the transcriptomes of breast muscle and liver tissues among pigeons at five developmental periods (0, 1, 2, 3, 4 weeks post-hatching) to identify candidate genes related to muscle growth and lipid metabolism. There were 3142 differentially expressed genes (DEGs) identified in the breast muscle libraries; 1794 genes were up-regulated while 1531 genes were down-regulated. A total of 1323 DEGs were acquired from the liver libraries, with 791 up-regulated genes and 591 down-regulated genes. By pathway enrichment analysis, a set of significantly enriched pathways were identified for the DEGs, which are potentially involved in cell proliferation and differentiation, lipid metabolism and energy metabolism in pigeon breast muscle and liver. Our results are consistent with previous partial reports from domestic animals and poultry and provide some unidentified genes involved in muscle growth and lipid metabolism. The reliability of the sequencing data was verified through qPCR analysis of 16 genes from eight comparison groups (two genes per group). The findings from this study could contribute to future investigations of muscle growth and lipid metabolism mechanisms and establish molecular approaches to improve muscle growth rate and meat quality in domestic pigeon breeding.

14.
Anim Biotechnol ; 33(3): 448-456, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32776801

RESUMEN

Meat quality is closely related to the fat deposition which is regulated by a cascade of transcription factors. As a transcription factor, the CCAAT/enhancer binding protein alpha (CEBPA) is considered as one of the key molecules regulating adipogenesis. Therefore, the objective of this study was to detect the expression pattern of the CEBPA gene and evaluate whether its single nucleotide polymorphisms (SNPs) were associated with the meat quality traits in Wuliang Mountain Black-bone (WLMB) chickens. The results showed that the chicken CEBPA mRNA was widely expressed in the 11 tissues, and the expression pattern of it might be tissue- and time-specific different. The locus of g.74C > G was not significantly associated with chicken meat quality. For the locus of g.552G > A, chickens with the GG genotype showed higher pH (p < 0.01), lower drip loss (p < 0.01) and higher intramuscular fat (p < 0.05) than those with other genotypes. It suggested that polymorphisms of the CEBPA gene were significantly associated with the meat quality traits of WLMB chickens. The results of this study contribute to the functional research of the CEBPA gene and lay the foundation for improving meat quality based on the marker-assisted selection in chickens.


Asunto(s)
Pollos , Carne , Animales , Pollos/genética , Expresión Génica , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple/genética
15.
Front Nutr ; 8: 748503, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712688

RESUMEN

Cinnamaldehyde is an aromatic aldehyde isolated from the essential oil of cinnamon. It has been proved to possess various bioactivities such as anti-inflammation, anti-bacteria and antihypertensive. Nevertheless, early weaning could lead to intestinal stress, causing a range of intestinal health problems. The aim of this study is to explore the effects of cinnamaldehyde on gut barrier integrity, inflammatory responses, and intestinal microbiome of early weaned rats. In this study, treatment with cinnamaldehyde (100 or 200 mg/kg bodyweight/day) for 2 weeks significantly promoted the production of mucins in the colonic epithelial tissue of rats. Cinnamaldehyde supplementation significantly upregulated the expression of Muc2, TFF3 and the tight junction proteins (ZO-1, claudin-1, and occludin). Hematoxylin and eosin staining results showed that colonic histopathological changes were recovered by cinnamaldehyde supplementation. The mRNA expression of IL-6 and TNF-α were significantly decreased in the cinnamaldehyde groups while the TNF-α protein levels were significantly decreased in the two cinnamaldehyde groups. Cinnamaldehyde treatment obviously attenuated the activation of NF-κB signaling pathway in rat colonic tissue and suppressed the production of inflammatory cytokines. Furthermore, cinnamaldehyde supplementation remodeled the gut microbiome structure, at the genus level, Akkermansia, Bacteroides, Clostridium III, Psychrobacter, Intestinimonas were increased, whereas those of Ruminococcus, Escherichia/Shigella were obviously decreased in the cinnamaldehyde treated groups. These findings indicated that cinnamaldehyde could effectively enhance intestinal barrier integrity, ameliorate inflammatory responses and remodel gut microbiome in early weaned rats.

16.
Front Bioeng Biotechnol ; 9: 694908, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604183

RESUMEN

Adipose derived mesenchymal stem cells (AD-MSCs) have shown therapeutic potential in treatments of inflammatory bowel disease (IBD). Due to the harsh host environment and poor survival of the cells, controversy concerning the homing, proliferation and differentiation of MSCs in lesion tissue still remains. It has been reported that conditioned media from MSCs could improve the colitis, whereas the therapeutic efficiency could be significantly elevated by the stimulation of pro-cytokines. In this study, we pre-treated the adipose derived MSCs with the serum from colitis rats and then the activated conditioned media (CM-AcMSC) were collected. To compare the therapeutic effects of CM-MSC and CM-AcMSC on IBD, we constructed dextran sodium sulphate (DSS)-induced colitis rat models. The colitis was induced in rats by administrating 5% DSS in drinking water for 10 days, and the disease symptoms were recorded daily. The colon histopathological changes were observed by different staining methods (H&E and PAS). The expression levels of MUC2 and tight junctions (TJs) were determined by RT-qPCR. The levels of inflammatory cytokines were analyzed by ELISA and western blot analysis. Our findings suggested that CM-AcMSC was more effective in ameliorating the clinical features and histological damage scores. Treatment with CM-AcMSC significantly increased the expression of MUC2 and TJs and suppressed the production of pro-inflammatory cytokines in colonic tissues of colitis rats. The inhibitory effects of CM-AcMSC on inflammatory responses of colitis rats were mediated by NF-κB signaling pathway. These results suggested that pre-activation of MSCs with serum from colitis rats could promote the production of paracrine factors and improve the therapeutic effects of conditioned medium on colitis rats.

17.
Front Genet ; 12: 571325, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33833772

RESUMEN

Egg production performance is one of the most important economic traits in pigeon industry. However, little is known regarding how egg production performance is regulated by long non-coding RNAs (lncRNAs) in pigeons. To evaluate the lncRNAs and mRNAs in ovaries associated with egg production performance in domestic pigeons, high-throughput RNA sequencing of ovaries between high and low egg production performance groups were performed and analyzed in this study. A total of 34,346 mRNAs and 24,601 lncRNAs were identified, including 14,525 known lncRNAs and 10,076 novel lncRNAs, of which 811 mRNAs and 148 lncRNAs (P < 0.05) were significantly differentially expressed (DE) between the groups of high and low egg production performance. GO and KEGG annotation analysis indicated that the target genes of DE lncRNAs and DE mRNAs were related to cell differentiation, ATP binding and methylation. Moreover, we found that FOXK2, a target gene of lncRNA MSTRG.7894.4, was involved in regulating estrogen receptors. Our study provided a catalog of lncRNAs and mRNAs associated with egg production performance, and they deserve further study to deepen the understanding of biological processes in the ovaries of pigeons.

18.
Animals (Basel) ; 11(2)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567786

RESUMEN

Meat quality is closely related to the development of skeletal muscle, in which PITX2 and SIX1 genes play important regulatory roles. The present study firstly provided the data of chronological expression files of PITX2 and SIX1 genes in the post-hatching pectoral muscle and analyzed the association of their polymorphisms with the meat quality traits of Wuliang Mountain Black-bone (WLMB) chickens. The results showed that both PITX2 and SIX1 genes were weakly expressed in the second and third weeks, and then increased significantly from the third week to the fourth week. Furthermore, there was a significant positive correlation between the expression levels of the two genes. Twelve and one SNPs were detected in the chicken PITX2 and SIX1 genes, respectively, of which four SNPs (g.9830C > T, g.10073C > T, g.13335G > A, g.13726A > G) of the PITX2 gene and one SNP (g.564G > A) of the SIX1 gene were significantly associated with chicken meat quality traits. For the PITX2 gene, chickens with the CT genotype of g.9830C > T showed the highest meat color L*, shear force (SF), pH, and the lowest electrical conductivity (EC), and drip loss (DL) (p < 0.05 or p < 0.01); chickens with the CC genotype of g.10073C > T had the lowest L*, pH, and the highest DL (p < 0.01). For the SIX1 gene, chickens with the GG genotype of g.564G > A had the highest (p < 0.05) SF and pH. Furthermore, pH had a significant correlation with all the other meat quality traits. The current study could contribute to the research of regulatory mechanisms of meat quality and lay the foundation for improving meat quality based on marker-assisted selection in chickens.

19.
Genomics ; 113(1 Pt 1): 257-264, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33338630

RESUMEN

Sperm motility is one of the most important indicators to evaluate poultry fertility. In order to explore key molecular regulation roles related to sperm motility, we employed testicular RNA sequencing of pigeon. A total of 705 known and 385 novel microRNAs were identified. Compared with the low sperm motility group, four upregulated and two downregulated miRNAs in the high sperm motility group were identified. A total of 3567 target mRNAs were predicted and four target mRNAs were selected to validate by qPCR. The miRNA-mRNA interaction network analysis, indicated that mmu-miR-183-5p /FOXO1 and PC-3p-244994_31/CHDH pairs might affect sperm motility. GO and KEGG annotation analysis showed that target genes of differentially expressed miRNAs were related to serine/threonine kinase activity, ATP binding, Wnt and MAPK signaling pathway. The study provided a global miRNAs transcriptome of pigeon and a novel insight into the expression of the miRNAs in testes that associated with sperm motility.


Asunto(s)
Columbidae/genética , MicroARNs/genética , ARN Mensajero/genética , Motilidad Espermática/genética , Testículo/metabolismo , Animales , Columbidae/fisiología , Masculino , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Testículo/citología
20.
Front Vet Sci ; 8: 838703, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35281430

RESUMEN

Reproductive efficiency is of significant importance in pork production for it has a great impact on economic success. Ovulation rate is an early component of reproduction efficiency of pigs, and it contributes to the upper limit of litter size. In this study, we used the newly developed recombinant pig follicle stimulating hormone (rpFSH) instead of traditional PMSG to increase ovulation rate of pigs in order to achieve higher litter size, for it was better at stimulating ovulation, and showed more cheaper and greener. However, relatively little is known about the underlying genetic bases and molecular mechanisms. Consequently, an experiment was carried out in ovaries of replacement gilts to screen the key genes and lncRNAs that affect the fecundity of pigs by RNA-seq technology. Twenty gilts were divided into two groups, including 10 rpFSH treatment pigs and 10 control animals. After slaughtering and collecting the phenotypic data, ovaries of five pigs in each group were selected for RNA-seq. Total RNA was extracted to construct the library and then sequence on an Illumina Hiseq 4000 system. A comprehensive analysis of mRNAs and long non-coding RNAs (lncRNAs) from 10 samples was performed with bioinformatics. The phenotypic data showed that rpFSH treatment groups had the higher (P < 0.01) ovarian weight and more mature follicles. The RNA-seq results showed that a total of 43,499 mRNAs and 21,703 lncRNAs were identified, including 21,300 novel lncRNAs and 403 known lncRNAs, of which 585 mRNAs and 398 lncRNAs (P < 0.05) were significantly differentially expressed (DE) between the two groups of rpFSH treatment group and controlled group. GO and KEGG annotation analysis indicated that the target genes of DE lncRNAs and DE mRNAs were related to prolactin receptor activity, mitophagy by induced vacuole formation, and meiotic spindle. Moreover, we found that NR5A2 (nuclear receptor subfamily 5, group A, member 2), a target gene of lncRNA MSTRG.3902.1, was involved in regulating follicular development, ovulation, and estrogen production. Our study provided a catalog of lncRNAs and mRNAs associated with ovulation of rpFSH treatment, and they deserve further study to deepen the understanding of biological processes in the regulation of ovaries of rpFSH treatment pigs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA