RESUMEN
BACKGROUND: Myeloablative, high-dose chemotherapy followed by autologous peripheral blood stem cell transplantation (PBSCT) improves outcome in some high-risk malignant solid tumors and lymphomas in children and young adults. METHODS: We performed 16 peripheral blood stem cell (PBSC) harvests in 12 children and 2 young adult patients with a high-risk malignant solid tumor or refractory/relapsed Hodgkin's lymphoma from August 2015 to December 2020. In our chemotherapy mobilization protocol, we used an absolute neutrophil count (ANC) of >1 × 109/L following the nadir after chemotherapy as the criterion for undertaking the apheresis. RESULTS: The median CD34+ cell count per kg body weight of the 33 apheresis products was 4.92 × 106 cells/kg (range, 0.34-22.53 × 106 cells/kg). Thirteen of the 14 patients (93%) had successful PBSC collections that met their goals for PBSCT. Three patients did not receive PBSCT due to disease progression prior to transplantation. Prompt engraftment occurred in all the remaining 11 patients with 17 PBSCTs. CONCLUSION: Our data suggest that ANC can be helpful as a surrogate parameter in clinical decision-making when the peripheral blood CD34+ count is unavailable.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Qiju Dihuang Pill (QDP) is a traditional Chinese medicine prescription for the treatment of eye diseases. Novel literature reports that copper-induced cell death, called as cuproptosis, is a copper-dependent and differs distinctly from other types of cell death. AIM OF THE STUDY: The present study aims to investigate whether QDP could protect lens epithelial cells via alleviating copper-induced death in diabetic cataract. MATERIALS AND METHODS: The different concentration of QDP medicated serum was administrated on high glucose (HG)-induced human lens epithelial cells (HLECs). The copper concentration was tested using Elabscience Copper Assay kit. The proliferation was detected using CCK-8 and EdU assays. The molecular binding was identified using RIP-PCR and luciferase reporter assay. RESULTS: Results indicated that HG culture condition triggered the copper concentration and repressed the proliferation of HLECs. Then, the elesclomol-Cu (Es-Cu) administration up-regulated the copper concentration and inhibited the proliferation, and cuproptosis inhibitor tetrathiomolybdate (TTM) could specifically reverse the consequence. QDP treatment reduced the copper concentration and cuproptosis-related genes (SLC31A1, FDX1). MeRIP-Seq and RIP-PCR confirmed that QDP reduced the stability of SLC31A1 mRNA through m6A modified site, and copper actually synergized the molecular binding efficiency. Rescue assay verified the role of QDP and SLC31A1 on HLECs' cuproptosis characteristic. CONCLUSION: This research identified the protective role of QDP on HG-induced HLECs in DC through decreasing m6A/SLC31A1-mediated cuproptosis in DC. This finding provides novel insights into mechanisms for QDP and sheds light on the multifaceted role of traditional prescription on DC.
Asunto(s)
Catarata , Proliferación Celular , Cobre , Medicamentos Herbarios Chinos , Células Epiteliales , Cristalino , Humanos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Catarata/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Cristalino/efectos de los fármacos , Cristalino/citología , Cristalino/metabolismo , Proliferación Celular/efectos de los fármacos , Complicaciones de la Diabetes/tratamiento farmacológico , Glucosa/metabolismo , Línea Celular , Células CultivadasRESUMEN
BACKGROUND: The effects of heat acclimation (HA) on the hypothalamus after exertional heatstroke (EHS) and the specific mechanism have not been fully elucidated, and this study aimed to address these questions. METHODS: In the present study, rats were randomly assigned to the control, EHS, HA, or HA + EHS groups (n = 9). Hematoxylin and eosin (H&E) staining was used to examine pathology. Tandem mass tag (TMT)-based proteomic analysis was utilized to explore the impact of HA on the protein expression profile of the hypothalamus after EHS. Bioinformatics analysis was used to predict the functions of the differentially expressed proteins. The differential proteins were validated by western blotting. An enzyme-linked immunosorbent assay was used to measure the expression levels of inflammatory cytokines in the serum. RESULTS: The H&E staining (n = 5) results revealed that there were less structural changes in hypothalamus in the HA + EHS group compared with the EHS group. Proteomic analysis (n = 4) revealed that proinflammatory proteins such as argininosuccinate synthetase (ASS1), high mobility group protein B2 (HMGB2) and vimentin were evidently downregulated in the HA + EHS group. The levels of interleukin (IL)-1ß, IL-1, and IL-8 were decreased in the serum samples (n = 3) from HA + EHS rats. CONCLUSIONS: HA may alleviate hypothalamic damage caused by heat attack by inhibiting inflammatory activities, and ASS1, HMGB2 and vimentin could be candidate factors involved in the exact mechanism.
Asunto(s)
Golpe de Calor , Hipotálamo , Proteómica , Ratas Sprague-Dawley , Animales , Hipotálamo/metabolismo , Golpe de Calor/metabolismo , Ratas , Masculino , Esfuerzo Físico/fisiología , Modelos Animales de EnfermedadRESUMEN
Saline soils are widely distributed in arid areas but there is a lack of mechanistic understanding on the effect of salinity on the formation and biochemical composition of soil organic carbon (SOC). We investigated the effects of salinity on the accumulation of microbial necromass under natural vegetation and in cropland in salt-affected arid areas stretching over a 1200-km transect in northwest China. Under both natural vegetation and cropland, microbial physiological activity (indicated by microbial biomass carbon normalized enzymatic activity) decreased sharply where the electrical conductivity approached 4 ds m-1 (a threshold to distinguish between saline and non-saline soils), but microbial biomass was only slightly affected by salinity. These indicated that a larger proportion of microbes could be inactive or dormant in saline soils. The contribution of fungal necromass C to SOC decreased but the contribution of bacterial necromass C to the SOC increased with increasing soil salinity. Adding fungal and bacterial necromass C together, the contribution of microbial necromass C to SOC in saline soils was 32-39 % smaller compared with non-saline soils. Fungal necromass C took up 85-86 % of microbial necromass C in non-saline soils but this proportion dropped to 60-66 % in saline soils. We suggested that the activity, growth, and turnover rate of microbes slowed by salinity was responsible for the decreased accumulation of fungal necromass in saline compared with non-saline soils, while the increased accumulation of bacterial residue in saline soils could be induced mainly by its slower decomposition. Soil microbial biomass was a poor predictor for the accumulation of microbial necromass in saline soils. We demonstrated a reduced contribution of microbial necromass to SOC and a shift in its composition towards the increase in bacterial origin in saline relative to non-saline soils. We concluded that salinity profoundly changes the biochemistry of SOC in arid regions.
Asunto(s)
Carbono , Salinidad , Microbiología del Suelo , Suelo , Suelo/química , Carbono/metabolismo , Carbono/análisis , China , Hongos , Clima Desértico , Bacterias/metabolismo , BiomasaRESUMEN
Pancreatic cancer (PC) is a highly malignant tumour of the digestive system with poor therapeutic response and low survival rates. Immunotherapy has rapidly developed in recent years and has achieved significant outcomes in numerous malignant neoplasms. However, responses to immunotherapy in PC are rare, and the immunosuppressive and desmoplastic tumour microenvironment (TME) significantly hinders their efficacy in PC. Tumour-associated neutrophils (TANs) play a crucial role in the PC microenvironment and exert a profound influence on PC immunotherapy by establishing a robust stromal shelter and restraining immune cells to assist PC cells in immune escape, which may subvert the current status of PC immunotherapy. The present review aims to offer a comprehensive summary of the latest progress in understanding the involvement of TANs in PC desmoplastic and immunosuppressive functions and to emphasise the potential therapeutic implications of focusing on TANs in the immunotherapy of this deleterious disease. Finally, we provide an outlook for the future use of TANs in PC immunotherapy.
Asunto(s)
Inmunoterapia , Neutrófilos , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Neutrófilos/inmunología , Neutrófilos/metabolismo , Microambiente Tumoral/inmunología , Inmunoterapia/métodos , Animales , Escape del Tumor/efectos de los fármacosRESUMEN
AIM: The goal of this study was to investigate the potential effects of an immunotherapeutic drug targeting STING to suppress the overreactive innate immune response and relieve the bone defect in apical periodontitis. METHODOLOGY: We established an apical periodontitis mouse model in Sting-/- and WT mice in vivo. The progression of apical periodontitis was analysed by micro-CT analysis and H&E staining. The expression level and localization of STING in F4/80+ cells were identified by IHC and immunofluorescence staining. RANKL in periapical tissues was tested by IHC staining. TRAP staining was used to detect osteoclasts. To clarify the effect of STING inhibitor C-176 as an immunotherapeutic drug, mice with apical periodontitis were treated with C-176 and the bone loss was identified by H&E, TRAP, RANKL staining and micro-CT. Bone marrow-derived macrophages (BMMs) were isolated from Sting-/- and WT mice and induced to osteoclasts in a lipopolysaccharide (LPS)-induced inflammatory environment in vitro. Moreover, WT BMMs were treated with C-176 to determine the effect on osteoclast differentiation by TRAP staining. The expression levels of osteoclast-related genes were tested using qRT-PCR. RESULTS: Compared to WT mice, the bone resorption and inflammatory cell infiltration were reduced in exposed Sting-/- mice. In the exposed WT group, STING was activated mainly in F4/80+ macrophages. Histological staining revealed the less osteoclasts and lower expression of osteoclast-related factor RANKL in Sting-/- mice. The treatment of the STING inhibitor C-176 in an apical periodontitis mice model alleviated inflammation progression and bone loss, similar to the effect observed in Sting-/- mice. Expression of RANKL and osteoclast number in periapical tissues were also decreased after C-176 administration. In vitro, TRAP staining showed fewer positive cells and qRT-PCR reflected decreased expression of osteoclastic marker, Src and Acp5 were detected during osteoclastic differentiation in Sting-/- and C-176 treated BMMs. CONCLUSIONS: STING was activated and was proven to be a positive factor in bone loss and osteoclastogenesis in apical periodontitis. The STING inhibitor C-176 administration could alleviate the bone loss via modulating local immune response, which provided immunotherapy to the treatment of apical periodontitis.
Asunto(s)
Modelos Animales de Enfermedad , Proteínas de la Membrana , Osteoclastos , Periodontitis Periapical , Animales , Periodontitis Periapical/metabolismo , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Osteoclastos/efectos de los fármacos , Resorción Ósea , Microtomografía por Rayos X , Ligando RANK/metabolismo , Ligando RANK/antagonistas & inhibidores , Pérdida de Hueso Alveolar , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
Bacterial infection is the main cause of pulpitis. However, whether a dominant bacteria can promote the progression of pulpitis and its underlying mechanism remains unclear. We provided a comprehensive assessment of the microbiota alteration in pulpitis using 16S rRNA sequencing. Fusobacterium nucleatum was the most enriched in pulpitis and played a pathogenic role accelerating pulpitis progression in rat pulpitis model. After odontoblast-like cells cocultured with F. nucleatum, the stimulator of interferon genes (STING) pathway and autophagy were activation. There was a float of STING expression during F. nucleatum stimulation. STING was degraded by autophagy at the early stage. At the late stage, F. nucleatum stimulated mitochondrial Reactive Oxygen Species (ROS) production, mitochondrial dysfunction and then mtDNA escape into cytosol. mtDNA, which escaped into cytosol, caused more cytosolic mtDNA binds to cyclic GMP-AMP synthase (cGAS). The release of IFN-ß was dramatically reduced when mtDNA-cGAS-STING pathway inhibited. STING-/- mice showed milder periapical bone loss and lower serum IFN-ß levels compared with wildtype mice after 28 days F. nucleatum-infected pulpitis model establishment. Our data demonstrated that F. nucleatum exacerbated the progression of pulpitis, which was mediated by the STING-dependent pathway.
Asunto(s)
Fusobacterium nucleatum , Pulpitis , Ratones , Ratas , Animales , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/metabolismo , Transducción de Señal , ARN Ribosómico 16S , Nucleotidiltransferasas/metabolismo , ADN Mitocondrial/genéticaRESUMEN
Serum carbohydrate antigen 125 (CA125) is associated with the prognosis of various malignancies, including ovarian and pancreatic cancer. The relationship between preoperative serum CA125 level and the survival of patients with intrahepatic cholangiocarcinoma (ICC) has not been fully studied. The aim of this study was to explore the prognostic value of CA125 in ICC after hepatectomy. We retrospectively reviewed the clinicopathological data of 178 ICC patients who underwent hepatic resection. Receiver operating characteristic analyses were performed to estimate the relationships of serum CA125, α-fetoprotein, carcinoembryonic antigen (CEA), and carbohydrate antigen 19-9 with the prognosis of ICC. The predictive value of CA125 for the prognosis of ICC patients was demonstrated by univariate analyses and Cox proportional hazards models. CA125 was correlated with tumor size, differentiation, capsulation, tumor node-metastasis stage, recurrence, and CEA. Univariate analysis indicated that CA125, sex, tumor number, tumor size, differentiation, surgical resection margin, tumor node metastasis stage, and CEA were risk factors for both the overall survival and the disease-free survival of ICC patients. Cox proportional hazards models showed that preoperative elevated CA125, a tumor size > 5 cm, and an R1 surgical resection margin were independent prognostic predictors of overall survival and disease-free survival. CA125 also had strong predictive value for the prognosis of different ICC subgroups, including patients without lymph node metastasis and with elevated carbohydrate antigen 19-9 levels. Preoperative elevated serum CA125 level is a noninvasive, simple, and reliable indicator of the prognosis of ICC patients after hepatectomy.
Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Pronóstico , Hepatectomía , Estudios Retrospectivos , Antígeno Carcinoembrionario , Márgenes de Escisión , Colangiocarcinoma/cirugía , Antígeno Ca-125 , Neoplasias de los Conductos Biliares/cirugía , Conductos Biliares Intrahepáticos , CarbohidratosRESUMEN
BACKGROUND: Exertional heatstroke (EHS) is an emergency with a high mortality rate, characterized by central nervous system dysfunctions. This study aims to establish a Heat acclimation/acclimatization (HA) rat model in locomotion to recapitulate the physical state of human in severe environment of high temperature and humidity, and investigate the mechanism of organism protection in HA. (2) Methods: Wistar rats were exposed to 36 °C and ran 2 h/d for 21 days, acquired thermal tolerance test was conducted to assess the thermotolerance and exercise ability. Core temperature and consumption of water and food were observed. Expression of HSP70 and HSP90 of different tissues were determined by WB. Pathological structure of brain tissue was detected with HE staining. Proteomics was used to identify the differently expressed proteins in cerebral cortex of different groups. And key molecules were identified by RT-PCR and WB. (3) Results: HA rats displayed stronger thermotolerance and exercised ability on acquired thermal tolerance test. Brain water content of HA + EHS group reduced compared with EHS group. HE staining revealed slighter brain injuries of HA + EHS group than that of EHS. Proteomics focused on cell death-related pathways and key molecules Aquaporin 4 (AQP4) related to cell edema. Identification results showed HA increased AQP4, Bcl-xl, ratio of p-Akt/AKT and Bcl-xl/Bax, down-regulated Cleaved Caspase-3. (4) Conclusions: This HA model can ameliorate brain injury of EHS by reducing cerebral edema and cell apoptosis, offering experimental evidence for EHS prophylaxis.
Asunto(s)
Lesiones Encefálicas , Golpe de Calor , Humanos , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt , Ratas Wistar , Respuesta al Choque Térmico , Aclimatación/fisiología , Ejercicio Físico/fisiologíaRESUMEN
The rhizosphere microbiota plays a critical and crucial role in plant health and growth, assisting plants in resisting adverse stresses, including soil salinity. Plastic film mulching is an important method to adjust soil properties and improve crop yield, especially in saline-alkali soil. However, it remains unclear whether and to what extent the association between these improvements and rhizosphere microbiota exists. Here, from a field survey and a greenhouse mesocosm experiment, we found that mulching plastic films on saline-alkali soil can promote the growth of soybeans in the field. Results of the greenhouse experiment showed that soybeans grew better in unsterilized saline-alkali soil than in sterilized saline-alkali soil under plastic film mulching. By detecting the variations in soil properties and analyzing the high-throughput sequencing data, we found that with the effect of film mulching, soil moisture content was effectively maintained, soil salinity was obviously reduced, and rhizosphere bacterial and fungal communities were significantly changed. Ulteriorly, correlation analysis methods were applied. The optimization of soil properties ameliorated the survival conditions of soil microbes and promoted the increase in relative abundance of potential beneficial microorganisms, contributing to the growth of soybeans. Furthermore, the classification of potential key rhizosphere microbial OTUs were identified. In summary, our study suggests the important influence of soil properties as drivers on the alteration of rhizosphere microbial communities and indicates the important role of rhizosphere microbiota in promoting plant performance in saline-alkali soil under plastic film mulching.
RESUMEN
BACKGROUND: Hirschsprung's disease (HSCR) is one of the most common congenital digestive tract malformations and can cause stubborn constipation or gastrointestinal obstruction after birth, causing great physical and mental pain to patients and their families. Studies have shown that more than 20 genes are involved in HSCR, and most cases of HSCR are sporadic. However, the overall rate of familial recurrence in 4331 cases of HSCR is about 7.6%. Furthermore, familial HSCR patients show incomplete dominance. We still do not know the penetrance and genetic characteristics of these known risk genes due to the rarity of HSCR families. METHODS: To find published references, we used the title/abstract terms "Hirschsprung" and "familial" in the PubMed database and the MeSH terms "Hirschsprung" and "familial" in Web of Science. Finally, we summarized 129 HSCR families over the last 40 years. RESULTS: The male-to-female ratio and the percentage of short segment-HSCR in familial HSCR are much lower than in sporadic HSCR. The primary gene factors in the syndromic families are ret proto-oncogene (RET) and endothelin B receptor gene (EDNRB). Most families show incomplete dominance and are relevant to RET, and the RET mutation has 56% penetrance in familial HSCR. When one of the parents is a RET mutation carrier in an HSCR family, the offspring's recurrence risk is 28%, and the incidence of the offspring does not depend on whether the parent suffers from HSCR. CONCLUSION: Our findings will help HSCR patients obtain better genetic counseling, calculate the risk of recurrence, and provide new insights for future pedigree studies.
Asunto(s)
Enfermedad de Hirschsprung , Humanos , Masculino , Femenino , Enfermedad de Hirschsprung/genética , Proteínas Proto-Oncogénicas c-ret/genética , Mutación , LinajeAsunto(s)
Poroqueratosis , Humanos , Mutación , Mutación Missense , Linaje , Poroqueratosis/genética , ChinaRESUMEN
Antibiotic resistance genes (ARGs) are abundantly shed in feces. Thus, it is crucial to identify their host sources so that ARG pollution can be effectively mitigated and aquatic ecosystems can be properly conserved. Here, spatiotemporal variations and sources of ARGs in the Longjiang watershed of South China were investigated by linking them with microbial source tracker (MST) indicators. The most frequently detected ARGs (>90%) were sulI, sulII, blaTEM, tetW, ermF, and the mobile element intI1. Spatial distribution analyses showed that tributaries contributed significantly more sulI, sulII, and ermF contamination to the Longjiang watershed than the main channel. MST indicator analysis revealed that the Longjiang watershed was contaminated mainly by human fecal pollution. Livestock- and poultry-associated fecal pollution significantly declined after the swine fever outbreak. The occurrence of most ARGs is largely explained by human fecal pollution. In contrast, pig fecal pollution might account for the prevalence of tetO. Moreover, combined human-pig fecal pollution contributed to the observed blaNDM-1 distribution in the Longjiang watershed. Subsequent analysis of the characteristics of MST markers disclosed that the relatively lower specificities of BacHum and Rum-2-Bac may lead to inaccurate results of tracking ARG pollution source. The present study determined spatiotemporal variations and ARG origins in the Longjiang watershed by combining MST markers. It also underscored the necessity of using multiple MST markers simultaneously to identify and characterize ARG pollution sources accurately.