Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 12: 746586, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745179

RESUMEN

We have developed a rapid Raman spectroscopy-based method for the detection and quantification of early innate immunity responses in Arabidopsis and Choy Sum plants. Arabidopsis plants challenged with flg22 and elf18 elicitors could be differentiated from mock-treated plants by their Raman spectral fingerprints. From the difference Raman spectrum and the value of p at each Raman shift, we derived the Elicitor Response Index (ERI) as a quantitative measure of the response whereby a higher ERI value indicates a more significant elicitor-induced immune response. Among various Raman spectral bands contributing toward the ERI value, the most significant changes were observed in those associated with carotenoids and proteins. To validate these results, we investigated several characterized Arabidopsis pattern-triggered immunity (PTI) mutants. Compared to wild type (WT), positive regulatory mutants had ERI values close to zero, whereas negative regulatory mutants at early time points had higher ERI values. Similar to elicitor treatments, we derived an analogous Infection Response Index (IRI) as a quantitative measure to detect the early PTI response in Arabidopsis and Choy Sum plants infected with bacterial pathogens. The Raman spectral bands contributing toward a high IRI value were largely identical to the ERI Raman spectral bands. Raman spectroscopy is a convenient tool for rapid screening for Arabidopsis PTI mutants and may be suitable for the noninvasive and early diagnosis of pathogen-infected crop plants.

2.
New Phytol ; 224(1): 493-504, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31125430

RESUMEN

Several SQUAMASA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors are involved in plant developmental transition from vegetative to reproductive growth. However, the function of SPL10 in regulating floral transition is largely unknown. It is also not known which Mediator subunit mediates SPL10 transcriptional activity. Here, we used overexpression lines and knockout mutants to examine the role of SPL10 in flowering-time regulation and we investigated possible interactions of SPL10 with several mediator subunits in vitro and in vivo. Plants overexpressing SPL10 showed precocious flowering, whereas the triple loss-of-function mutants of SPL10 and its two homologous genes, SPL2 and SPL11, flowered late compared with wild-type plants. We found that SPL10 interacts with MED25, a subunit of the Mediator complex, which bridges transcription factors and RNA polymerase II to facilitate transcription initiation. Genetic analysis showed that MED25 acts downstream of SPL10 to execute SPL10-regulated floral transition. Furthermore, SPL10 was required for MED25 association with the promoters of two target genes, FUL and LFY. We provide evidence that SPL10 recruits MED25 to the promoters of target genes to regulate flowering time. Our results on the SPL10/MED25 module are relevant to the molecular mechanism of other SPL family members.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Unión al ADN/metabolismo , Flores/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Epistasis Genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Modelos Biológicos , Regiones Promotoras Genéticas , Unión Proteica , Factores de Tiempo , Factores de Transcripción/genética
3.
BMC Plant Biol ; 19(1): 1, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30606102

RESUMEN

BACKGROUND: Stevia rebaudiana produces sweet-tasting steviol glycosides (SGs) in its leaves which can be used as natural sweeteners. Metabolic engineering of Stevia would offer an alternative approach to conventional breeding for enhanced production of SGs. However, an effective protocol for Stevia transformation is lacking. RESULTS: Here, we present an efficient and reproducible method for Agrobacterium-mediated transformation of Stevia. In our attempts to produce transgenic Stevia plants, we found that prolonged dark incubation is critical for increasing shoot regeneration. Etiolated shoots regenerated in the dark also facilitated subsequent visual selection of transformants by green fluorescent protein during Stevia transformation. Using this newly established transformation method, we overexpressed the Stevia 1-deoxy-d-xylulose-5-phosphate synthase 1 (SrDXS1) and kaurenoic acid hydroxylase (SrKAH), both of which are required for SGs biosynthesis. Compared to control plants, the total SGs content in SrDXS1- and SrKAH-overexpressing transgenic lines were enhanced by up to 42-54% and 67-88%, respectively, showing a positive correlation with the expression levels of SrDXS1 and SrKAH. Furthermore, their overexpression did not stunt the growth and development of the transgenic Stevia plants. CONCLUSION: This study represents a successful case of genetic manipulation of SGs biosynthetic pathway in Stevia and also demonstrates the potential of metabolic engineering towards producing Stevia with improved SGs yield.


Asunto(s)
Diterpenos de Tipo Kaurano/metabolismo , Glucósidos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas de Plantas/metabolismo , Stevia/metabolismo , Transferasas/metabolismo , Ingeniería Genética/métodos , Oxigenasas de Función Mixta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Stevia/enzimología , Stevia/genética , Transferasas/genética
4.
Front Plant Sci ; 9: 1479, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405653

RESUMEN

Vegetable oil is an important renewable resource for dietary consumption for human and livestock, and more recently for biodiesel production. Lipid traits in crops are controlled by multiple quantitative trait loci (QTLs) and each of them has a small effect on lipid traits. So far, there is limited success to increase lipid yield and improve lipid quality in plants. Here, we reported the identification of a homolog of APETALA2 (AP2) transcription factor WRINKLED1 (JcWRI1) from an oleaginous plant Jatropha curcas and characterized its function in Jatropha and Arabidopsis thaliana. Using physical mapping data, we located JcWRI1 in a QTL region specifying high oleate and lipid content in Jatropha. Overexpression of JcWRI1 in Jatropha elevated seed lipid content and increased seed mass. Lipid profile in seeds of over-expression plants showed higher oleate content which will be beneficial to improve biodiesel quality. Overexpression of JcWRI1 activated lipid-related gene expression and JcWRI1 was shown to directly bind to the AW-box of promoters of some of these genes. In conclusion, we were able to increase seed lipid content and improve seed lipid quality in Jatropha by manipulating one key transcription factor JcWRI1.

5.
New Phytol ; 219(4): 1480-1491, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29862530

RESUMEN

Dispersed H3K27 trimethylation (H3K27me3) of the AGAMOUS (AG) genomic locus is mediated by CURLY LEAF (CLF), a component of the Polycomb Repressive Complex (PRC) 2. Previous reports have shown that the AG second intron, which confers AG tissue-specific expression, harbors sequences targeted by several positive and negative regulators. Using RACE reverse transcription polymerase chain reaction, we found that the AG intron 2 encodes several noncoding RNAs. RNAi experiment showed that incRNA4 is needed for CLF repressive activity. AG-incRNA4RNAi lines showed increased leaf AG mRNA levels associated with a decrease of H3K27me3 levels; these plants displayed AG overexpression phenotypes. Genetic and biochemical analyses demonstrated that the AG-incRNA4 can associate with CLF to repress AG expression in leaf tissues through H3K27me3-mediated repression and to autoregulate its own expression level. The mechanism of AG-incRNA4-mediated repression may be relevant to investigations on tissue-specific expression of Arabidopsis MADS-box genes.


Asunto(s)
Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Intrones/genética , Hojas de la Planta/genética , ARN no Traducido/genética , Transcripción Genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Co-Represoras/metabolismo , Flores/genética , Glucuronidasa/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/genética , Especificidad de Órganos/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , Plantones/genética
6.
Plant Biotechnol J ; 15(9): 1105-1119, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28160379

RESUMEN

Many aromatic plants, such as spearmint, produce valuable essential oils in specialized structures called peltate glandular trichomes (PGTs). Understanding the regulatory mechanisms behind the production of these important secondary metabolites will help design new approaches to engineer them. Here, we identified a PGT-specific R2R3-MYB gene, MsMYB, from comparative RNA-Seq data of spearmint and functionally characterized it. Analysis of MsMYB-RNAi transgenic lines showed increased levels of monoterpenes, and MsMYB-overexpressing lines exhibited decreased levels of monoterpenes. These results suggest that MsMYB is a novel negative regulator of monoterpene biosynthesis. Ectopic expression of MsMYB, in sweet basil and tobacco, perturbed sesquiterpene- and diterpene-derived metabolite production. In addition, we found that MsMYB binds to cis-elements of MsGPPS.LSU and suppresses its expression. Phylogenetic analysis placed MsMYB in subgroup 7 of R2R3-MYBs whose members govern phenylpropanoid pathway and are regulated by miR858. Analysis of transgenic lines showed that MsMYB is more specific to terpene biosynthesis as it did not affect metabolites derived from phenylpropanoid pathway. Further, our results indicate that MsMYB is probably not regulated by miR858, like other members of subgroup 7.


Asunto(s)
Mentha spicata/genética , Monoterpenos/metabolismo , Aceites Volátiles/metabolismo , Aceites de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Difosfatos/metabolismo , Diterpenos/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Mentha spicata/citología , Mentha spicata/metabolismo , Ocimum basilicum/citología , Ocimum basilicum/genética , Ocimum basilicum/metabolismo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Metabolismo Secundario , Sesquiterpenos/metabolismo , Nicotiana/citología , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética
7.
Sci Rep ; 7: 40844, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28102350

RESUMEN

Seed size is a major determinant of seed yield but few is known about the genetics controlling of seed size in plants. Phytohormones cytokinin and brassinosteroid were known to be involved in the regulation of herbaceous plant seed development. Here we identified a homolog of Auxin Response Factor 19 (JcARF19) from a woody plant Jatropha curcas and genetically demonstrated its functions in controlling seed size and seed yield. Through Virus Induced Gene Silencing (VIGS), we found that JcARF19 was a positive upstream modulator in auxin signaling and may control plant organ size in J. curcas. Importantly, transgenic overexpression of JcARF19 significantly increased seed size and seed yield in plants Arabidopsis thaliana and J. curcas, indicating the importance of auxin pathway in seed yield controlling in dicot plants. Transcripts analysis indicated that ectopic expression of JcARF19 in J. curcas upregulated auxin responsive genes encoding essential regulators in cell differentiation and cytoskeletal dynamics of seed development. Our data suggested the potential of improving seed traits by precisely engineering auxin signaling in woody perennial plants.


Asunto(s)
Jatropha/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Citoesqueleto/metabolismo , Silenciador del Gen , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ácidos Indolacéticos/metabolismo , Jatropha/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Virus de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Unión Proteica , Semillas/fisiología , Alineación de Secuencia , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
8.
Plant Biotechnol J ; 14(7): 1619-32, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26842602

RESUMEN

In many aromatic plants including spearmint (Mentha spicata), the sites of secondary metabolite production are tiny specialized structures called peltate glandular trichomes (PGT). Having high commercial values, these secondary metabolites are exploited largely as flavours, fragrances and pharmaceuticals. But, knowledge about transcription factors (TFs) that regulate secondary metabolism in PGT remains elusive. Understanding the role of TFs in secondary metabolism pathway will aid in metabolic engineering for increased yield of secondary metabolites and also the development of new production techniques for valuable metabolites. Here, we isolated and functionally characterized a novel MsYABBY5 gene that is preferentially expressed in PGT of spearmint. We generated transgenic plants in which MsYABBY5 was either overexpressed or silenced using RNA interference (RNAi). Analysis of the transgenic lines showed that the reduced expression of MsYABBY5 led to increased levels of terpenes and that overexpression decreased terpene levels. Additionally, ectopic expression of MsYABBY5 in Ocimum basilicum and Nicotiana sylvestris decreased secondary metabolite production in them, suggesting that the encoded transcription factor is probably a repressor of secondary metabolism.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Mentha spicata/genética , Ingeniería Metabólica , Proteínas de Plantas/genética , Terpenos/metabolismo , Factores de Transcripción/genética , Tricomas/metabolismo , Redes y Vías Metabólicas/genética , Ocimum basilicum/genética , Ocimum basilicum/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Interferencia de ARN , Factores de Transcripción/metabolismo
9.
Plant Cell Rep ; 35(1): 103-14, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26441058

RESUMEN

KEY MESSAGE: Casbene is a precursor to phorbol esters and down-regulating casbene synthase effectively reduces phorbol ester biosynthesis. Seed-specific reduction of phorbol ester (PE) helps develop Jatropha seed cake for animal nutrition. Phorbol esters (PEs) are diterpenoids present in some Euphorbiaceae family members like Jatropha curcas L. (Jatropha), a tropical shrub yielding high-quality oil suitable as feedstock for biodiesel and bio jet fuel. Jatropha seed contains up to 40 % of oil and can produce oil together with cake containing high-quality proteins. However, skin-irritating and cancer-promoting PEs make Jatropha cake meal unsuitable for animal nutrition and also raise some safety and environmental concerns on its planting and processing. Two casbene synthase gene (JcCASA163 and JcCASD168) homologues were cloned from Jatropha genome and both genes were highly expressed during seed development. In vitro functional analysis proved casbene synthase activity of JcCASA163 in converting geranylgeranyl diphosphate into casbene which has been speculated to be the precursor to PEs. A seed-specific promoter driving inverted repeats for RNAi interference targeting at either JcCASA163 or both genes could effectively down-regulate casbene synthase gene expression with concurrent marked reduction of PE level (by as much as 85 %) in seeds with no pleiotropic effects observed. Such engineered low PE in seed was heritable and co-segregated with the transgene. Our work implicated casbene synthase in Jatropha PE biosynthesis and provided evidence for casbene being the precursor for PEs. The success in reducing seed PE content through down-regulation of casbene synthase demonstrates the feasibility of intercepting PE biosynthesis in Jatropha seed to help address safety concerns on Jatropha plantation and seed processing and facilitate use of its seed protein for animal nutrition.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Jatropha/enzimología , Ésteres del Forbol/metabolismo , Liasas de Fósforo-Oxígeno/genética , Secuencia de Aminoácidos , Animales , Biocombustibles , Regulación hacia Abajo , Perfilación de la Expresión Génica , Ingeniería Genética , Humanos , Jatropha/química , Jatropha/genética , Especificidad de Órganos , Liasas de Fósforo-Oxígeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Interferencia de ARN , Semillas/química , Semillas/enzimología , Semillas/genética , Alineación de Secuencia
10.
BMC Plant Biol ; 15: 242, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26450182

RESUMEN

BACKGROUND: Jatropha curcas L. is a potential biofuel plant and its seed oil is suitable for biodiesel production. Despite this promising application, jatropha seeds contain two major toxic components, namely phorbol esters and curcins. These compounds would reduce commercial value of seed cake and raise safety and environment concerns on jatropha plantation and processing. Curcins are Type I ribosome inactivating proteins. Several curcin genes have been identified in the jatropha genome. Among which, the Curcin 1 (C1) gene is identified to be specifically expressed in endosperm, whereas the Curcin 2A (C2A) is mainly expressed in young leaves. RESULTS: A marker-free RNAi construct carrying a ß-estradiol-regulated Cre/loxP system and a C1 promoter-driven RNAi cassette for C1 gene was made and used to generate marker-free transgenic RNAi plants to specifically silence the C1 gene in the endosperm of J. curcas. Plants of transgenic line L1, derived from T0-1, carry two copies of marker-free RNAi cassette, whereas plants of L35, derived from T0-35, harbored one copy of marker-free RNAi cassette and three copies of closely linked and yet truncated Hpt genes. The C1 protein content in endosperm of L1 and L35 seeds was greatly reduced or undetectable, while the C2A proteins in young leaves of T0-1 and T0-35 plants were unaffected. In addition, the C1 mRNA transcripts were undetectable in the endosperm of T3 seeds of L1 and L35. The results demonstrated that the expression of the C1 gene was specifically down-regulated or silenced by the double-stranded RNA-mediated RNA interference generated from the RNAi cassette. CONCLUSION: The C1 promoter-driven RNAi cassette for the C1 gene in transgenic plants was functional and heritable. Both C1 transcripts and C1 proteins were greatly down-regulated or silenced in the endosperm of transgenic J. curcas. The marker-free transgenic plants and curcin-deficient seeds developed in this study provided a solution for the toxicity of curcins in jatropha seeds and addressed the safety concerns of the marker genes in transgenic plants on the environments.


Asunto(s)
Endospermo/genética , Jatropha/genética , Interferencia de ARN , Proteínas Inactivadoras de Ribosomas Tipo 1/biosíntesis , Semillas/genética , Northern Blotting , Southern Blotting , Western Blotting , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Marcadores Genéticos , Especificidad de Órganos/genética , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Biotechnol Biofuels ; 7(1): 149, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25352912

RESUMEN

BACKGROUND: Jatropha curcus is a good candidate plant for biodiesel production in tropical and subtropical regions. However, J. curcus is susceptible to the geminivirus Indian cassava mosaic virus (ICMV), and frequent viral disease outbreaks severely limit productivity. Therefore the development of J. curcus to carry on durable virus resistance remains crucial and poses a major biotechnological challenge. RESULTS: We generated transgenic J. curcus plants expressing a hairpin, double-stranded (ds) RNA with sequences homologous to five key genes of ICMV-Dha strain DNA-A, which silences sequence-related viral genes thereby conferring ICMV resistance. Two rounds of virus inoculation were conducted via vacuum infiltration of ICMV-Dha. The durability and heritability of resistance conferred by the dsRNA was further tested to ascertain that T1 progeny transgenic plants were resistant to the ICMV-SG strain, which shared 94.5% nucleotides identity with the ICMV-Dha strain. Quantitative PCR analysis showed that resistant transgenic lines had no detectable virus. CONCLUSIONS: In this study we developed transgenic J. curcus plants to include a resistance to prevailing geminiviruses in Asia. These virus-resistant transgenic J. curcus plants can be used in various Jatropha breeding programs.

12.
Biotechnol Biofuels ; 7: 68, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24808924

RESUMEN

BACKGROUND: The potential biofuel plant Jatropha curcas L. is affected by larvae of Archips micaceanus (Walker), a moth of the family Tortricidae. The hybrid Bacillus thuringiensis (Bt) δ-endotoxin protein Cry1Ab/1Ac confers resistance to lepidopteran insects in transgenic rice. RESULTS: Here, we report the production of a marker-free transgenic line of J. curcas (L10) expressing Cry1Ab/1Ac using Agrobacterium-mediated transformation and a chemically regulated, Cre/loxP-mediated DNA recombination system. L10 carries a single copy of marker-free T-DNA that contains the Cry1Ab/1Ac gene under the control of a maize phosphoenolpyruvate carboxylase gene promoter (P Pepc :Cry1Ab/1Ac:T Nos ). The P Pepc :Cry1Ab/1Ac:T Nos gene was highly expressed in leaves of L10 plants. Insecticidal bioassays using leaf explants of L10 resulted in 80-100% mortality of larvae of A. micaceanus at 4 days after infestation. CONCLUSION: The results demonstrate that the hybrid Bt δ-endotoxin protein Cry1Ab/1Ac expressed in Jatropha curcas displays strong insecticidal activity to A. micaceanus. The marker-free transgenic J. curcas line L10 can be used for breeding of insect resistance to A. micaceanus.

13.
Biotechnol Biofuels ; 7(1): 36, 2014 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-24606605

RESUMEN

BACKGROUND: Triacylglycerols (TAGs) are the most abundant form of storage oil in plants. They consist of three fatty acid chains (usually C16 or C18) covalently linked to glycerol. SDP1 is a specific lipase for the first step of TAG catabolism in Arabidopsis seeds. Arabidopsis mutants deficient in SDP1 accumulate high levels of oils, probably due to blockage in TAG degradation. We applied this knowledge from the model plant, Arabidopsis thaliana, to engineer increased seed oil content in the biodiesel plant Jatropha curcas using RNA interference (RNAi) technology. RESULTS: As Jatropha is a biodiesel crop, any significant increase in its seed oil content would be an important agronomic trait. Using A. thaliana as a model plant, we found that a deficiency of SDP1 led to higher TAG accumulation and a larger number of oil bodies in seeds compared with wild type (Columbia-0; Col-0). We cloned Jatropha JcSDP1, and verified its function by complementation of the Arabidopsis sdp1-5 mutant. Taking advantage of the observation with Arabidopsis, we used RNAi technology to generate JcSDP1 deficiency in transgenic Jatropha. We found that Jatropha JcSDP1-RNAi plants accumulated 13 to 30% higher total seed storage lipid, along with a 7% compensatory decrease in protein content, compared with control (CK; 35S:GFP) plants. Free fatty acid (FFA) content in seeds was reduced from 27% in control plants to 8.5% in JcSDP1-RNAi plants. CONCLUSION: Here, we showed that SDP1 deficiency enhances seed oil accumulation in Arabidopsis. Based on this result, we generated SDP1-deficient transgenic Jatropha plants using by RNAi technology with a native JcSDP1 promoter to silence endogenous JcSDP1 expression. Seeds of Jatropha JcSDP1-RNAi plants accumulated up to 30% higher total lipid and had reduced FFA content compared with control (CK; 35S:GFP) plants. Our strategy of improving an important agronomic trait of Jatropha can be extended to other oil crops to yield higher seed oil.

14.
Biotechnol Biofuels ; 5(1): 10, 2012 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-22377043

RESUMEN

BACKGROUND: Jatropha curcas is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chemical composition of the fatty acids present in the oil. The fatty acids profile of the oil has a direct impact on ignition quality, heat of combustion and oxidative stability. An ideal biodiesel composition should have more monounsaturated fatty acids and less polyunsaturated acids. Jatropha seed oil contains 30% to 50% polyunsaturated fatty acids (mainly linoleic acid) which negatively impacts the oxidative stability and causes high rate of nitrogen oxides emission. RESULTS: The enzyme 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (FAD2) is the key enzyme responsible for the production of linoleic acid in plants. We identified three putative delta 12 fatty acid desaturase genes in Jatropha (JcFAD2s) through genome-wide analysis and downregulated the expression of one of these genes, JcFAD2-1, in a seed-specific manner by RNA interference technology. The resulting JcFAD2-1 RNA interference transgenic plants showed a dramatic increase of oleic acid (> 78%) and a corresponding reduction in polyunsaturated fatty acids (< 3%) in its seed oil. The control Jatropha had around 37% oleic acid and 41% polyunsaturated fatty acids. This indicates that FAD2-1 is the major enzyme responsible for converting oleic acid to linoleic acid in Jatropha. Due to the changes in the fatty acids profile, the oil of the JcFAD2-1 RNA interference seed was estimated to yield a cetane number as high as 60.2, which is similar to the required cetane number for conventional premium diesel fuels (60) in Europe. The presence of high seed oleic acid did not have a negative impact on other Jatropha agronomic traits based on our preliminary data of the original plants under greenhouse conditions. Further, we developed a marker-free system to generate the transgenic Jatropha that will help reduce public concerns for environmental issues surrounding genetically modified plants. CONCLUSION: In this study we produced seed-specific JcFAD2-1 RNA interference transgenic Jatropha without a selectable marker. We successfully increased the proportion of oleic acid versus linoleic in Jatropha through genetic engineering, enhancing the quality of its oil.

15.
Transgenic Res ; 17(2): 293-306, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17549600

RESUMEN

While genetically modified upland cotton (Gossypium hirsutum L.) varieties are ranked among the most successful genetically modified organisms (GMO), there is little knowledge on transgene integration in the cotton genome, partly because of the difficulty in obtaining large numbers of transgenic plants. In this study, we analyzed 139 independently derived T0 transgenic cotton plants transformed by Agrobacterium tumefaciens strain AGL1 carrying a binary plasmid pPZP-GFP. It was found by PCR that as many as 31% of the plants had integration of vector backbone sequences. Of the 110 plants with good genomic Southern blot results, 37% had integration of a single T-DNA, 24% had two T-DNA copies and 39% had three or more copies. Multiple copies of the T-DNA existed either as repeats in complex loci or unlinked loci. Our further analysis of two T1 populations showed that segregants with a single T-DNA and no vector sequence could be obtained from T0 plants having multiple T-DNA copies and vector sequence. Out of the 57 T-DNA/T-DNA junctions cloned from complex loci, 27 had canonical T-DNA tandem repeats, the rest (30) had deletions to T-DNAs or had inclusion of vector sequences. Overlapping micro-homology was present for most of the T-DNA/T-DNA junctions (38/57). Right border (RB) ends of the T-DNA were precise while most left border (LB) ends (64%) had truncations to internal border sequences. Sequencing of collinear vector integration outside LB in 33 plants gave evidence that collinear vector sequence was determined in agrobacterium culture. Among the 130 plants with characterized flanking sequences, 12% had the transgene integrated into coding sequences, 12% into repetitive sequences, 7% into rDNAs. Interestingly, 7% had the transgene integrated into chloroplast derived sequences. Nucleotide sequence comparison of target sites in cotton genome before and after T-DNA integration revealed overlapping microhomology between target sites and the T-DNA (8/8), deletions to cotton genome in most cases studied (7/8) and some also had filler sequences (3/8). This information on T-DNA integration in cotton will facilitate functional genomic studies and further crop improvement.


Asunto(s)
Agrobacterium tumefaciens/genética , Genoma de Planta , Gossypium/genética , Recombinación Genética , Transgenes/fisiología , Secuencia de Bases , Southern Blotting , Cartilla de ADN , ADN Bacteriano/genética , ADN de Plantas/genética , Vectores Genéticos , Gossypium/crecimiento & desarrollo , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transformación Genética
16.
Plant Cell ; 15(12): 2792-804, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14615601

RESUMEN

In flowering plants, pollen formation depends on the differentiation and interaction of two cell types in the anther: the reproductive cells, called microsporocytes, and somatic cells that form the tapetum. The microsporocytes generate microspores, whereas the tapetal cells support the development of microspores into mature pollen grains. Despite their importance to plant reproduction, little is known about the underlying genetic mechanisms that regulate the differentiation and interaction of these highly specialized cells in the anther. Here, we report the identification and characterization of a novel tapetum determinant1 (TPD1) gene that is required for the specialization of tapetal cells in the Arabidopsis anther. Analysis of the male-sterile mutant, tpd1, showed that functional interruption of TPD1 caused the precursors of tapetal cells to differentiate and develop into microsporocytes instead of tapetum. As a results, extra microsporocytes were formed and tapetum was absent in developing tpd1 anthers. Molecular cloning of TPD1 revealed that it encodes a small protein of 176 amino acids. In addition, tpd1 was phenotypically similar to excess microsporocytes1/extra sporogenous cells (ems1/exs) single and tpd1 ems1/exs double mutants. These data suggest that the TPD1 product plays an important role in the differentiation of tapetal cells, possibly in coordination with the EMS1/EXS gene product, a Leu-rich repeat receptor protein kinase.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Diferenciación Celular/fisiología , Flores/crecimiento & desarrollo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Diferenciación Celular/genética , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Flores/genética , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutación , Fenotipo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...