Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 136: 112372, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38850784

RESUMEN

Hypoxic ischemic encephalopathy (HIE) is a primary cause of neonatal death and disabilities. The pathogenetic process of HIE is closely associated with neuroinflammation. Therefore, targeting and suppressing inflammatory pathways presents a promising therapeutic strategy for the treatment of HIE. Echinatin is an active component of glycyrrhiza, with anti-inflammatory and anti-oxidative properties. It is commonly combined with other traditional Chinese herbs to exert heat-clearing and detoxifying effects. This study aimed to investigate the anti-inflammatory and neuroprotective effects of Echinatin in neonatal rats with hypoxic-ischemic brain damage, as well as in PC12 cells exposed to oxygen-glucose deprivation (OGD). In vivo, Echinatin effectively reduced cerebral edema and infarct volume, protected brain tissue morphology, improved long-term behavioral functions, and inhibited microglia activation. These effects were accompanied by the downregulation of inflammatory factors and pyroptosis markers. The RNA sequencing analysis revealed an enrichment of inflammatory genes in rats with hypoxic-ischemic brain damage, and Protein-protein interaction (PPI) network analysis identified TLR4, MyD88, and NF-κB as the key regulators. In vitro, Echinatin reduced the levels of TLR4 relevant proteins, inhibited nuclear translocation of NF-κB, reduced the expression of downstreams inflammatory cytokines and pyroptosis proteins, and prevented cell membrane destructions. These findings demonstrated that Echinatin could inhibit the TLR4/NF-κB pathway, thereby alleviating neuroinflammation and pyroptosis. This suggests that Echinatin could be a potential candidate for the treatment of HIE.


Asunto(s)
Hipoxia-Isquemia Encefálica , FN-kappa B , Fármacos Neuroprotectores , Piroptosis , Ratas Sprague-Dawley , Transducción de Señal , Receptor Toll-Like 4 , Animales , Masculino , Ratas , Animales Recién Nacidos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Inflamación/tratamiento farmacológico , Microglía/efectos de los fármacos , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , FN-kappa B/metabolismo , Células PC12 , Piroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Subunidad p50 de NF-kappa B/metabolismo
2.
Int Immunopharmacol ; 134: 112257, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759366

RESUMEN

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is a major contributor to neonatal mortality and neurodevelopmental disorders, but currently there is no effective therapy drug for HIE. Mitochondrial dysfunction plays a pivotal role in hypoxic-ischemic brain damage(HIBD). Menaquinone-4 (MK-4), a subtype of vitamin K2 prevalent in the brain, has been shown to enhance mitochondrial function and exhibit protective effects against ischemia-reperfusion injury. However, the impact and underlying molecular mechanism of MK-4 in HIE have not been fully elucidated. METHODS: In this study, we established the neonatal rats HIBD model in vivo and oxygen-glucose deprivation and reperfusion (OGD/R) of primary neurons in vitro to explore the neuroprotective effects of MK-4 on HI damage, and illuminate the potential mechanism. RESULTS: Our findings revealed that MK-4 ameliorated mitochondrial dysfunction, reduced oxidative stress, and prevented HI-induced neuronal apoptosis by activating the Sirt1-PGC-1α-TFAM signaling pathway through Sirt1 mediation. Importantly, these protective effects were partially reversed by EX-527, a Sirt1 inhibitor. CONCLUSION: Our study elucidated the potential therapeutic mechanism of MK-4 in neonatal HIE, suggesting its viability as an agent for enhancing recovery from HI-induced cerebral damage in newborns. Further exploration into MK-4 could lead to novel interventions for HIE therapy.


Asunto(s)
Animales Recién Nacidos , Apoptosis , Hipoxia-Isquemia Encefálica , Mitocondrias , Neuronas , Fármacos Neuroprotectores , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Ratas Sprague-Dawley , Transducción de Señal , Sirtuina 1 , Vitamina K 2 , Animales , Sirtuina 1/metabolismo , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Transducción de Señal/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Vitamina K 2/análogos & derivados , Vitamina K 2/farmacología , Vitamina K 2/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratas , Neuronas/efectos de los fármacos , Neuronas/patología , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Factores de Transcripción/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/metabolismo
3.
Transl Pediatr ; 12(11): 1944-1970, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38130589

RESUMEN

Background: Hypoxic-ischemic brain damage (HIBD) is a type of brain damage that is caused by perinatal asphyxia and serious damages the central nervous system. At present, there is no effective drug for the treatment of this disease. Besides, the pathogenesis of HIBD remains elusive. While studies have shown that ferroptosis plays an important role in HIBD, its role and mechanism in HIBD are yet to be fully understood. Methods: The HIBD model of neonatal rats was established using the Rice-Vannucci method. A complete medium of PC12 cells was adjusted to a low-sugar medium, and the oxygen-glucose deprivation model was established after continuous hypoxia for 12 h. Laser Doppler blood flow imaging was used to detect the blood flow intensity after modeling. 2,3,5-triphenyl tetrazolium chloride staining was employed to detect ischemic cerebral infarction in rat brain tissue, and hematoxylin and eosin staining and transmission electron microscopy were used to observe brain injury and mitochondrial damage. Immunofluorescence was applied to monitor the expression of GFAP. Real-time quantitative polymerase chain reaction, western blot, and immunofluorescence were utilized to detect the expression of messenger RNA and protein. The level of reactive oxygen species (ROS) in cells was detected using the ROS detection kit. Results: The results showed that ferrostatin-1 (Fer-1) significantly alleviated the brain injury caused by hypoxia and ischemia. Fer-1 significantly increased the expression of SLC3A2, SLC7A11, ACSL3, GSS, and GPX4 (P<0.05) and dramatically decreased the expressions of GFAP, ACSL4, TFRC, FHC, FLC, 4-HNE, HIF-1α, and ROS (P<0.05). Conclusions: Fer-1 inhibits ferroptosis and alleviates HIBD by potentially targeting the GPX4/ACSL3/ACSL4 axis; however, its specific mechanism warrants further exploration.

4.
Mol Neurobiol ; 60(12): 7021-7031, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37526894

RESUMEN

Brown adipose tissue (BAT) is a special type of fat tissue in mammals and is also a key endocrine organ in the human body. Batokine, the endocrine effector of BAT, plays a neuroprotective role and improves the prognosis by exerting anti-apoptotic and anti-inflammatory effects, as well as by improving vascular endothelial function and other mechanisms in nerve injury diseases. The present article briefly reviewed several types of batokines related to central nervous system (CNS) diseases. Following this, the potential therapeutic value and future research direction of batokines for CNS diseases were chiefly discussed from the aspects of protective mechanism and signaling pathway.


Asunto(s)
Tejido Adiposo Pardo , Enfermedades del Sistema Nervioso Central , Animales , Humanos , Tejido Adiposo Pardo/metabolismo , Transducción de Señal , Enfermedades del Sistema Nervioso Central/metabolismo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...