Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 73: 103200, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781729

RESUMEN

Currently, chemotherapy remains occupying a pivotal place in the treatment of pancreatic ductal adenocarcinoma (PDAC). Nonetheless, the emergence of drug resistance in recent years has limited the clinical efficacy of chemotherapeutic agents, especially gemcitabine (GEM). Through bioinformatics analysis, AT-rich Interactive Domain-containing Protein 3A (ARID3A), one of transcription factors, is discovered to possibly participate in this progress. This study thoroughly investigates the potential role of ARID3A in the malignant progression and GEM chemoresistance of PDAC and explores the underlying mechanisms. The results indicate that ARID3A knockdown suppresses tumor development and enhances the sensitivity of PDAC cells to GEM in vitro and vivo. Mechanically, CUT&Tag profiling sequencing, RNA-sequencing and functional studies demonstrates that decreased ARID3A expression alleviates the transcriptional inhibition of phosphatase and tensin homolog (PTEN), consequently leading to glutathione peroxidase 4 (GPX4) depletion and increased lipid peroxidation levels. Activated ferroptosis induced by the inhibition of GPX4 subsequently restricts tumor progression and reduces GEM resistance in PDAC. This research identifies the ferroptosis regulatory pathway of ARID3A-PTEN-GPX4 axis and reveals its critical role in driving the progression and chemoresistance of pancreatic cancer. Notably, both inhibition of ARID3A and enhancement of ferroptosis can increase chemosensitivity to GEM, which offers a promising opportunity for developing therapeutic strategies to combat acquired chemotherapy resistance in pancreatic cancer.


Asunto(s)
Proteínas de Unión al ADN , Resistencia a Antineoplásicos , Ferroptosis , Regulación Neoplásica de la Expresión Génica , Fosfohidrolasa PTEN , Neoplasias Pancreáticas , Factores de Transcripción , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Humanos , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Resistencia a Antineoplásicos/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Gemcitabina , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética
2.
Br J Cancer ; 130(9): 1505-1516, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38454166

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with a 5-year survival rate of 12%. The abundant mesenchyme is partly responsible for the malignancy. The antifibrotic therapies have gained attention in recent research. However, the role of pirfenidone, an FDA-approved drug for idiopathic pulmonary fibrosis, remains unclear in PDAC. METHODS: Data from RNA-seq of patient-derived xenograft (PDX) models treated with pirfenidone were integrated using bioinformatics tools to identify the target of cell types and genes. Using confocal microscopy, qRT-PCR and western blotting, we validated the signalling pathway in tumour cells to regulate the cytokine secretion. Further cocultured system demonstrated the interplay to regulate stroma fibrosis. Finally, mouse models demonstrated the potential of pirfenidone in PDAC. RESULTS: Pirfenidone can remodulate multiple biological pathways, and exerts an antifibrotic effect through inhibiting the secretion of PDGF-bb from tumour cells by downregulating the TGM2/NF-kB/PDGFB pathway. Thus, leading to a subsequent reduction in collagen X and fibronectin secreted by CAFs. Moreover, the mice orthotopic pancreatic tumour models demonstrated the antifibrotic effect and potential to sensitise gemcitabine. CONCLUSIONS: Pirfenidone may alter the pancreatic milieu and alleviate fibrosis through the regulation of tumour-stroma interactions via the TGM2/NF-kB/PDGFB signalling pathway, suggesting potential therapeutic benefits in PDAC management.


Asunto(s)
Carcinoma Ductal Pancreático , Fibrosis , Neoplasias Pancreáticas , Piridonas , Piridonas/farmacología , Piridonas/uso terapéutico , Humanos , Animales , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ratones , Fibrosis/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Gemcitabina , Proteína Glutamina Gamma Glutamiltransferasa 2 , Microambiente Tumoral/efectos de los fármacos , FN-kappa B/metabolismo
3.
Comput Struct Biotechnol J ; 21: 2631-2639, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153537

RESUMEN

Intratumor heterogeneity of positron emission tomography-computed tomography (PET-CT) is reflected by variable 18F-fluorodeoxyglucose (FDG) uptake. Increasing evidence has shown that neoplastic and non-neoplastic components can affect the total 18F-FDG uptake in tumors. Cancer-associated fibroblasts (CAFs) is considered as the main non-neoplastic components in tumor microenvironment (TME) of pancreatic cancer. Our study aims to explore the impact of metabolic changes in CAFs on heterogeneity of PET-CT. A total of 126 patients with pancreatic cancer underwent PET-CT and endoscopic ultrasound elastography (EUS-EG) before treatment. High maximum standardized uptake value (SUVmax) from the PET-CT was positively correlated with the EUS-derived strain ratio (SR) and indicated poor prognosis of patients. In addition, single-cell RNA analysis showed that CAV1 affected glycolytic activity and correlated with glycolytic enzyme expression in fibroblasts in pancreatic cancer. We also observed the negative correlation between CAV1 and glycolytic enzyme expression in the tumor stroma by using immunohistochemistry (IHC) assay in the SUVmax-high and SUVmax-low groups of pancreatic cancer patients. Additionally, CAFs with high glycolytic activity contributed to pancreatic cancer cell migration, and blocking CAF glycolysis reversed this process, suggesting that glycolytic CAFs promote malignant biological behavior in pancreatic cancer. In summary, our research demonstrated that the metabolic reprogramming of CAFs affects total 18F-FDG uptake in tumors. Thus, an increase in glycolytic CAFs with decreased CAV1 expression promotes tumor progression, and high SUVmax may be a marker for therapy targeting the neoplastic stroma. Further studies should clarify the underlying mechanisms.

4.
Mol Cancer ; 20(1): 131, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635121

RESUMEN

Cancer-associated fibroblasts (CAFs), a stromal cell population with cell-of-origin, phenotypic and functional heterogeneity, are the most essential components of the tumor microenvironment (TME). Through multiple pathways, activated CAFs can promote tumor growth, angiogenesis, invasion and metastasis, along with extracellular matrix (ECM) remodeling and even chemoresistance. Numerous previous studies have confirmed the critical role of the interaction between CAFs and tumor cells in tumorigenesis and development. However, recently, the mutual effects of CAFs and the tumor immune microenvironment (TIME) have been identified as another key factor in promoting tumor progression. The TIME mainly consists of distinct immune cell populations in tumor islets and is highly associated with the antitumor immunological state in the TME. CAFs interact with tumor-infiltrating immune cells as well as other immune components within the TIME via the secretion of various cytokines, growth factors, chemokines, exosomes and other effector molecules, consequently shaping an immunosuppressive TME that enables cancer cells to evade surveillance of the immune system. In-depth studies of CAFs and immune microenvironment interactions, particularly the complicated mechanisms connecting CAFs with immune cells, might provide novel strategies for subsequent targeted immunotherapies. Herein, we shed light on recent advances regarding the direct and indirect crosstalk between CAFs and infiltrating immune cells and further summarize the possible immunoinhibitory mechanisms induced by CAFs in the TME. In addition, we present current related CAF-targeting immunotherapies and briefly describe some future perspectives on CAF research in the end.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Comunicación Celular , Sistema Inmunológico , Neoplasias/etiología , Neoplasias/metabolismo , Microambiente Tumoral , Inmunidad Adaptativa , Animales , Biomarcadores de Tumor , Comunicación Celular/inmunología , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunidad Innata , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Clasificación del Tumor , Metástasis de la Neoplasia , Neoplasias/patología , Neoplasias/terapia , Transducción de Señal , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo
5.
ACS Appl Mater Interfaces ; 13(19): 22664-22675, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-33950668

RESUMEN

The three-dimensional (3D) architecture of electrode materials with excellent stability and electrochemical activity is extremely desirable for high-performance supercapacitors. In this study, we develop a facile method for fabricating 3D self-supporting Ti3C2 with MoS2 and Cu2O nanocrystal composites for supercapacitor applications. MoS2 was incorporated in Ti3C2 using a hydrothermal method, and Cu2O was embedded in two-dimensional nanosheets by in situ chemical reduction. The resulting composite electrode showed a synergistic effect between the components. Ti3C2 served as a conductive additive to connect MoS2 nanosheets and facilitate charge transfer. MoS2 acted as an active spacer to increase the interlayer space of Ti3C2 and protect Ti3C2 from oxidation. Cu2O effectively prevented the collapse of the lamellar structure of Ti3C2-MoS2. Consequently, the optimized composite exhibited an excellent specific capacitance of 1459 F g-1 at a current density of 1 A g-1. Further, by assembling an all-solid-state flexible supercapacitor with activated carbon, a high energy density of 60.5 W h kg-1 was achieved at a power density of 103 W kg-1. Additionally, the supercapacitor exhibited a capacitance retention of 90% during 3000 charging-discharging cycles. Moreover, high mechanical robustness was retained after bending at different angles, thereby suggesting significant potential applications for future flexible and wearable devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...