Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Research (Wash D C) ; 6: 0121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223477

RESUMEN

Disturbance of the cholinergic system plays a crucial role in the pathological progression of neurological diseases that cause dyskinesia-like behaviors. However, the molecular mechanisms underlying this disturbance remain elusive. Here, we showed that cyclin-dependent kinase 5 (Cdk5) was reduced in cholinergic neurons of midbrain according to the single-nucleus RNA sequencing analysis. Serum levels of CDK5 also decreased in patients with Parkinson's disease accompanied by motor symptoms. Moreover, Cdk5 deficiency in cholinergic neurons triggered paw tremors, abnormal motor coordination, and motor balance deficits in mice. These symptoms occurred along with cholinergic neuron hyperexcitability and increases in the current density of large-conductance Ca2+-activated K+ channels (BK channels). Pharmacological inhibition of BK channels restrained the excessive intrinsic excitability of striatal cholinergic neurons in Cdk5-deficient mice. Furthermore, CDK5 interacted with BK channels and negatively regulated BK channel activity via phosphorylation of threonine-908. Restoration of CDK5 expression in striatal cholinergic neurons reduced dyskinesia-like behaviors in ChAT-Cre;Cdk5f/f mice. Together, these findings indicate that CDK5-induced phosphorylation of BK channels involves in cholinergic-neuron-mediated motor function, providing a potential new therapeutic target for treating dyskinesia-like behaviors arising from neurological diseases.

3.
Signal Transduct Target Ther ; 7(1): 170, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35641478

RESUMEN

Cerebellar ataxias are characterized by a progressive decline in motor coordination, but the specific output circuits and underlying pathological mechanism remain poorly understood. Through cell-type-specific manipulations, we discovered a novel GABAergic Purkinje cell (PC) circuit in the cerebellar IV/V lobe that projected to CaMKIIα+ neurons in the fastigial nucleus (FN), which regulated sensorimotor coordination. Furthermore, transcriptomics profiling analysis revealed various cerebellar neuronal identities, and we validated that biorientation defective 1 (BOD1) played an important role in the circuit of IV/V lobe to FN. BOD1 deficit in PCs of IV/V lobe attenuated the excitability and spine density of PCs, accompany with ataxia behaviors. Instead, BOD1 enrichment in PCs of IV/V lobe reversed the hyperexcitability of CaMKIIα+ neurons in the FN and ameliorated ataxia behaviors in L7-Cre; BOD1f/f mice. Together, these findings further suggest that specific regulation of the cerebellar IV/V lobePCs → FNCaMKIIα+ circuit might provide neuromodulatory targets for the treatment of ataxia behaviors.


Asunto(s)
Núcleos Cerebelosos , Células de Purkinje , Animales , Ataxia , Núcleos Cerebelosos/fisiología , Ratones , Neuronas , Células de Purkinje/fisiología
4.
Redox Biol ; 47: 102147, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34601428

RESUMEN

Severe anorexia limits the clinical application of cisplatin, and even leads to the discontinuation of treatment. However, the mechanisms underlying cisplatin-induced anorexia are unknown. Herein, we demonstrated that cisplatin could affect neuronal gamma oscillations and induce abnormal neuronal theta-gamma phase-amplitude coupling in the arcuate nucleus (Arc) of the hypothalamus, and these findings were associated with significantly decreased food intake and weight loss in mice. Chemogenetic activation of AgRP neurons in the Arc reversed the cisplatin-induced food intake reduction in mice. We further demonstrated that endothelial peroxynitrite (ONOO-) formation in the Arc induced nitrosative stress following cisplatin treatment via a previously uncharacterized pathway involving neuronal caspase-1 activation. Strikingly, treatment with the ONOO- scavenger uric acid (UA) reversed the reduced action potential (AP) frequency of AgRP neurons and increased the AP frequency of POMC neurons induced by SIN1, a donor of ONOO-, in the Arc, as determined by whole-cell patch-clamp electrophysiological recording. Consistent with these findings, UA treatment effectively alleviated cisplatin-induced dysfunction of neuronal oscillations and neuronal theta-gamma phase-amplitude coupling in the Arc of mice. Taken together, these results suggest, for the first time, that targeting the overproduction of endothelial ONOO- can regulate cisplatin-induced neurotoxicity through neuronal caspase-1, and thereby serve as a potential therapeutic approach to alleviate chemotherapy-induced anorexia and weight loss.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Ácido Peroxinitroso , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Caspasa 1 , Ratones , Neuronas/metabolismo , Proopiomelanocortina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA