Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(11): 8051-8061, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38445976

RESUMEN

The intracellular clustering of anisotropic nanoparticles is crucial to the improvement of the localized surface plasmon resonance (LSPR) for phototherapy applications. Herein, we programmed the intracellular clustering process of spiky nanoparticles (SNPs) by encapsulating them into an anionic liposome via a frame-guided self-assembly approach. The liposome-encapsulated SNPs (lipo-SNPs) exhibited distinct and enhanced lysosome-triggered aggregation behavior while maintaining excellent monodispersity, even in acidic or protein-rich environments. We explored the enhancement of the photothermal therapy performance for SNPs as a proof of concept. The photothermal conversion efficiency of lipo-SNPs clusters significantly increased 15 times compared to that of single lipo-SNPs. Upon accumulation in lysosomes with a 2.4-fold increase in clustering, lipo-SNPs resulted in an increase in cell-killing efficiency to 45% from 12% at 24 µg/mL. These findings indicated that liposome encapsulation provides a promising approach to programing nanoparticle clustering at the target site, which facilitates advances in the development of smart nanomedicine with programmable enhancement in LSPR.


Asunto(s)
Liposomas , Nanopartículas , Fototerapia/métodos , Resonancia por Plasmón de Superficie , Nanomedicina
2.
Chempluschem ; 89(6): e202300781, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38355897

RESUMEN

Efficient biocatalytic cascade reactions play a crucial role in guiding intricate, specific and selective intracellular transformation processes. However, the catalytic activity of the enzyme cascade reaction in bulk solution was greatly impacted by the spatial morphology and inter-enzyme distance. The programmability and addressability nature of framework nucleic acid (FNA) allows to be used as scaffold for immobilization and to direct the spatial arrangement of enzyme cascade molecules. Here, we used tetrahedral DNA framework (TDF) as nanorulers to assemble two enzymes for constructing a double-enzyme complex, which significantly enhance the catalytic efficiency of sarcosine oxidase (SOx)/horseradish peroxidase (HRP) cascade system. We synthesized four types of TDF nanorulers capable of programming the lateral distance between enzymes from 5.67 nm to 12.33 nm. Enzymes were chemical modified by ssDNA while preserving most catalytic activity. Polyacrylamide gel electrophoresis (PAGE), transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to verify the formation of double-enzyme complex. Four types of double-enzyme complexes with different enzyme distance were constructed, in which TDF26(SOx+HRP) exhibited the highest relative enzyme cascade catalytic activity, ~3.11-fold of free-state enzyme. Importantly, all the double-enzyme complexes demonstrate a substantial improvement in enzyme cascade catalytic activity compared to free enzymes.


Asunto(s)
Biocatálisis , ADN , Peroxidasa de Rábano Silvestre , Sarcosina-Oxidasa , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , ADN/química , ADN/metabolismo , Sarcosina-Oxidasa/química , Sarcosina-Oxidasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo
3.
Adv Mater ; 36(9): e2308344, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37921116

RESUMEN

Nanoscale vesicles such as synaptic vesicles play a pivotal role in efficient interneuronal communications in vivo. However, the coexistence of single vesicle and vesicle clusters in living cells increases the heterogeneity of vesicle populations, which largely complicates the quantitative analysis of the vesicles. The high spatiotemporal monitoring of vesicle assemblies is currently incompletely resolved. Here, this work uses synthetic vesicles and DNA nanorulers to reconstruct in vitro the vesicle assemblies that mimic vesicle clusters in living cells. DNA nanorulers program the lateral distance of vesicle assemblies from 3 to 10 nm. This work uses the carbon fiber nanoelectrode (CFNE) to amperometric monitor artificial vesicle assemblies with sub-10 nm interspaces, and obtain a larger proportion of complex events. This work resolves the heterogeneity of individual vesicle release kinetics in PC12 cells with the temporal resolution down to ≈0.1 ms. This work further analyzes the aggregation state of intracellular vesicles and the exocytosis of living cells with electrochemical vesicle cytometry. The results indicate that the exocytosis of vesicle clusters is critically dependent on the size of clusters. This technology has the potential as a tool to shed light on the heterogeneity analysis of vesicle populations.


Asunto(s)
Comunicación , ADN , Animales , Ratas , Cinética , Células PC12
4.
Adv Mater ; 36(6): e2307499, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37800877

RESUMEN

The exponential growth of global data has outpaced the storage capacities of current technologies, necessitating innovative storage strategies. DNA, as a natural medium for preserving genetic information, has emerged as a highly promising candidate for next-generation storage medium. Storing data in DNA offers several advantages, including ultrahigh physical density and exceptional durability. Facilitated by significant advancements in various technologies, such as DNA synthesis, DNA sequencing, and DNA nanotechnology, remarkable progress has been made in the field of DNA data storage over the past decade. However, several challenges still need to be addressed to realize practical applications of DNA data storage. In this review, the processes and strategies of in vitro DNA data storage are first introduced, highlighting recent advancements. Next, a brief overview of in vivo DNA data storage is provided, with a focus on the various writing strategies developed to date. At last, the challenges encountered in each step of DNA data storage are summarized and promising techniques are discussed that hold great promise in overcoming these obstacles.


Asunto(s)
ADN , Nanotecnología , ADN/genética , Nanotecnología/métodos , Almacenamiento y Recuperación de la Información , Análisis de Secuencia de ADN/métodos , Secuencia de Bases
5.
ACS Nano ; 17(10): 9155-9166, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37171255

RESUMEN

Spike-like nanostructures are omnipresent in natural and artificial systems. Although biorecognition of nanostructures to cellular receptors has been indicated as the primary factor for virus infection pathways, how the spiky morphology of DNA-modified nanoparticles affects their cellular uptake and intracellular fate remains to be explored. Here, we design dually emissive gold nanoparticles with varied spikiness (from 0 to 2) to probe the interactions of spiky nanoparticles with cells. We discovered that nanospikes at the nanoparticle regulated myosin IIA recruitment at the cell membrane during cellular uptake, thereby enhancing cellular uptake efficiency, as revealed by dual-modality (plasmonic and fluorescence) imaging. Furthermore, the spiky nanoparticles also exhibited facilitated endocytosis dynamics, as revealed by real-time dark-field microscopy (DFM) imaging and colorimetry-based classification algorithms. These findings highlight the crucial role of the spiky morphology in regulating the intracellular fate of nanoparticles, which may shed light on engineering theranostic nanocarriers.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Miosina Tipo IIA no Muscular , Miosina Tipo IIA no Muscular/metabolismo , Oro/química , Nanopartículas del Metal/química , Nanopartículas/química , Transporte Biológico , Membrana Celular/metabolismo , Endocitosis
6.
Nat Nanotechnol ; 18(6): 677-686, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36973399

RESUMEN

A molecular classification of diseases that accurately reflects clinical behaviour lays the foundation of precision medicine. The development of in silico classifiers coupled with molecular implementation based on DNA reactions marks a key advance in more powerful molecular classification, but it nevertheless remains a challenge to process multiple molecular datatypes. Here we introduce a DNA-encoded molecular classifier that can physically implement the computational classification of multidimensional molecular clinical data. To produce unified electrochemical sensing signals across heterogeneous molecular binding events, we exploit DNA-framework-based programmable atom-like nanoparticles with n valence to develop valence-encoded signal reporters that enable linearity in translating virtually any biomolecular binding events to signal gains. Multidimensional molecular information in computational classification is thus precisely assigned weights for bioanalysis. We demonstrate the implementation of a molecular classifier based on programmable atom-like nanoparticles to perform biomarker panel screening and analyse a panel of six biomarkers across three-dimensional datatypes for a near-deterministic molecular taxonomy of prostate cancer patients.


Asunto(s)
ADN , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética
7.
ACS Appl Mater Interfaces ; 15(1): 541-551, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36534594

RESUMEN

Designing an ocular drugs delivery system that can permeate the outer blood-retinal barrier (oBRB) is crucial for the microinvasive or noninvasive treatment of ocular fundus diseases. However, due to the lack of a nanocarrier that can maintain structure and composition at the oBRB, only intravitreal injection at the eyeball can deliver therapeutics directly to the ocular fundus via paracellular and intercellular routes, despite the intraocular operations risks. Here, we demonstrated tetrahedral framework nucleic acids (tFNAs) can penetrate the oBRB and deliver therapeutic nucleic acids to the retina of the rat eye in vivo following subconjunctival injection. We also discovered that tFNAs were transported via a paracellular route across the intercellular tight junctions at the oBRB. The histology analysis for ocular layers indicated that individual and aptamer/doxorubicin-loaded tFNAs penetrated all layers of the posterior segment of the eyeball to reach the innermost retina and persisted for over 3 days with minimal systemic biodistribution. We expect that the programmability and penetrability of tFNAs will provide a promising method for drug delivery across oBRB and long-term sustenance at the target site via periocular administration to various tissues.


Asunto(s)
Barrera Hematorretinal , Ácidos Nucleicos , Ratas , Animales , Distribución Tisular , Retina , Sistemas de Liberación de Medicamentos/métodos
8.
JACS Au ; 2(11): 2381-2399, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36465542

RESUMEN

Artificial molecular machines have found widespread applications ranging from fundamental studies to biomedicine. More recent advances in exploiting unique physical and chemical properties of DNA have led to the development of DNA-based artificial molecular machines. The unprecedented programmability of DNA provides a powerful means to design complex and sophisticated DNA-based molecular machines that can exert mechanical force or motion to realize complex tasks in a controllable, modular fashion. This Perspective highlights the potential and strategies to construct artificial molecular machines using double-stranded DNA, functional nucleic acids, and DNA frameworks, which enable improved control over reaction pathways and motion behaviors. We also outline the challenges and opportunities of using DNA-based molecular machines for biophysics, biosensing, and biocomputing.

9.
Sci Robot ; 7(73): eabq5151, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36542686

RESUMEN

Biomimetic machines that can convert mechanical actuation to adaptive coloration in a manner analogous to cephalopods have found widespread applications at various length scales. At the nanoscale, a transmutable nanomachine with adaptive colors that can sense and mediate cellular or intracellular interactions is highly desirable. Here, we report the design of a DNA framework nanomachine (DFN) that can autonomously change shape in response to pH variations in single synaptic vesicles, which, in turn, displays adaptive fluorescent colors with a mechano-fluorescence actuation mechanism. To construct a DFN, we used a tetrahedral DNA nanostructure as the framework to incorporate an embedded pH-responsive, i-motif sequence tagged with a Förster resonance energy transfer pair and an affinity cholesterol moiety targeting vesicular membranes. We found that endocytosed DFNs are individually trapped in single endocytic vesicles in living synaptic cells due to the size-exclusion effect. The adaptive fluorescence coloration of DFNs enabled single-vesicle quantification of resting pH values in a processive manner, allowing long-term tracking of the exocytosis and fusion dynamics in intracellular processes and cell-cell communications.


Asunto(s)
Robótica , Vesículas Sinápticas , Vesículas Sinápticas/fisiología , Exocitosis/fisiología , ADN
10.
Chem Commun (Camb) ; 58(22): 3673-3676, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35225310

RESUMEN

A DNA origami nanocaliper is employed as a shape-resolved nanomechanical device, with pH-responsive triplex DNA integrated into the two arms. The shape transition of the nanocaliper results in a subtle difference depending on the local pH that is visible via TEM imaging, demonstrating the potential of these nanocalipers to act as a universal platform for pH sensing at the nanoscale.


Asunto(s)
Nanoestructuras , Nanotecnología , ADN , Concentración de Iones de Hidrógeno , Nanotecnología/métodos , Conformación de Ácido Nucleico
11.
ACS Cent Sci ; 7(8): 1400-1407, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34471683

RESUMEN

Cell-cell communications exhibit distinct physiological functions in immune responses and neurotransmitter signaling. Nevertheless, the ability to reconstruct a soma-soma synapse-like junction for probing intercellular communications remains difficult. In this work, we develop a DNA origami nanostructure-based method for establishing cell conjugation, which consequently facilitates the reconstruction of a soma-soma synapse-like junction. We demonstrate that intercellular communications including small molecule and membrane vesicle exchange between cells are maintained in the artificially designed synapse-like junction. By inserting the carbon fiber nanometric electrodes into the soma-soma synapse-like junction, we accomplish the real-time monitoring of individual vesicular exocytotic events and obtain the information on vesicular exocytosis kinetics via analyzing the parameters of current spikes. This strategy provides a versatile platform to study synaptic communications.

12.
Chem Rev ; 121(17): 10469-10558, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34254782

RESUMEN

Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.


Asunto(s)
Enfermedades Transmisibles/diagnóstico , ADN/análisis , Técnicas de Amplificación de Ácido Nucleico , Sondas de Ácido Nucleico , ARN/análisis , Animales , Enfermedades Transmisibles/microbiología , Enfermedades Transmisibles/virología , Humanos , Sondas de Ácido Nucleico/análisis
13.
Chem Commun (Camb) ; 57(26): 3247-3250, 2021 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-33646233

RESUMEN

The response sensitivity of a molecular sensor is determined by the folding cooperativity of its responsive module. Using an H+-responsive dimeric DNA i-motif as a model, we demonstrate the enhancement of its folding cooperativity through preorganization by a DNA framework, and with it we fabricate robust intracellular pH sensors with high response sensitivity.


Asunto(s)
ADN/química , Composición de Base , Concentración de Iones de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico
14.
Anal Chem ; 93(4): 2226-2234, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33417427

RESUMEN

Real-time imaging of multiple low-abundance microRNAs (miRNAs) simultaneously in living cells with high sensitivity is of vital importance for accurate cancer clinical diagnosis and prognosis studies. Maintaining stability of nanoprobes resistant to enzyme degradation and enabling effective signal amplification is highly needed for in vivo imaging studies. Herein, a rationally designed one-pot assembled multicolor tetrahedral DNA frameworks (TDFs) by encoding multicomponent nucleic acid enzymes (MNAzymes) was developed for signal-amplified multiple miRNAs imaging in living cells with high sensitivity and selectivity. TDFs could enter cells via self-delivery with good biocompatibility and stability. Two kinds of MNAzymes specific for miRNA-21 and miRNA-155 with fluorescein labeling were encoded in the structure of TDFs respectively through one-step thermal annealing. In the intracellular environment, the TDFs could be specifically bound with its specific miRNA target and form an active DNAzyme structure. The cleavage of the active site would trigger the release of target miRNA and circular fluorescence signal amplification, which enabled accurate diagnosis on miRNA identifications of different cell lines with high sensitivity. Meanwhile, with the specific AS1411 aptamer targeting for nucleolin overexpressed on the surface of the carcinoma cells, this well-designed TDFs nanoprobe exhibited good discrimination between cancer cells and normal cells. The strategy provides an efficient tool for understanding the biological function of miRNAs in cancer pathogenesis and therapeutic applications.


Asunto(s)
ADN/química , MicroARNs/química , Imagen Molecular/métodos , Línea Celular Tumoral , Supervivencia Celular , Humanos , Espacio Intracelular/metabolismo , Microscopía de Fuerza Atómica , Sondas Moleculares/química , Nanotecnología/métodos , Conformación de Ácido Nucleico
15.
Nat Protoc ; 16(1): 383-404, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33288954

RESUMEN

A comprehensive understanding of interactions between nanoparticles (NPs) and biological components is critical to the clinical application of NPs and nanomedicine. Here we provide a step-by-step correlative imaging approach to investigate plasmonic NPs of different aggregation states at the single-cell level. Traceable spherical nucleic acids (SNAs) are fabricated by decorating 50-nm spherical gold NPs with fluorophore-labeled DNA, serving as dually emissive (fluorescent and plasmonic) NPs. The in situ correlative imaging with dark-field microscopy (DFM) and fluorescence microscopy (FM) reveals intracellular distribution of SNAs, whereas DFM combined with scanning electron microscopy (SEM) allows semi-quantification of SNA clustering states in solution. The imaging data are analyzed by ImageJ and a colorimetry-based algorithm written in Python. The clustering states of SNAs in a single cell can be efficiently distinguished within 20 s. This method can be readily installed to monitor real-time endocytosis and cellular distribution of plasmonic NPs of different aggregation states and to quantitatively image targets of interest (e.g., specific DNA, messenger RNA, peptides or proteins) in living cells. The entire procedure can be completed in 3-5 d and requires standard DFM, FM and SEM imaging and data analysis skills and equipment.


Asunto(s)
Endocitosis , Ácidos Nucleicos/análisis , Análisis de la Célula Individual/métodos , Diseño de Equipo , Colorantes Fluorescentes/análisis , Células HeLa , Humanos , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Nanopartículas/análisis , Imagen Óptica/instrumentación , Imagen Óptica/métodos , Análisis de la Célula Individual/instrumentación
16.
Sci China Chem ; 64(2): 171-203, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33293939

RESUMEN

Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis. During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs. In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided.

17.
ACS Nano ; 14(7): 8776-8783, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32484652

RESUMEN

Active sites of proteins are generally encapsulated within three-dimensional peptide scaffolds that provide the molecular-scale confinement microenvironment. Nevertheless, the ability to tune thermodynamic stability in biomimetic molecular confinement relies on the macromolecular crowding effect of lack of stoichiometry and reconfigurability. Here, we report a framework nucleic acid (FNA)-based strategy to increase thermodynamic stability of aptamers. We demonstrate that the molecular-scale confinement increases the thermodynamic stability of aptamers via facilitated folding kinetics, which is confirmed by the single-molecule FRET (smFRET). Unfavorable conformations of aptamers are restricted as revealed by the Monte Carlo simulation. The binding affinity of the DNA framework-confined aptamer is improved by ∼3-fold. With a similar strategy we improve the catalytic activity of hemin-binding aptamer. Our approach thus shows high potential for designing protein-mimicking DNA nanostructures with enhanced binding affinity and catalytic activity for biosensing and biomedical engineering.


Asunto(s)
Aptámeros de Nucleótidos , ADN , Hemina , Proteínas , Termodinámica
18.
Nat Protoc ; 15(7): 2163-2185, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32572244

RESUMEN

Circulating tumor cells (CTCs) enable noninvasive liquid biopsy and identification of cancer. Various approaches exist for the capture and release of CTCs, including microfluidic methods and those involving magnetic beads or nanostructured solid interfaces. However, the concomitant cell damage and fragmentation that often occur during capture make it difficult to extensively characterize and analyze living CTCs. Here, we describe an aptamer-trigger-clamped hybridization chain reaction (atcHCR) method for the capture of CTCs by porous 3D DNA hydrogels. The 3D environment of the DNA networks minimizes cell damage, and the CTCs can subsequently be released for live-cell analysis. In this protocol, initiator DNAs with aptamer-toehold biblocks specifically bind to the epithelial cell adhesion molecule (EpCAM) on the surface of CTCs, which triggers the atcHCR and the formation of a DNA hydrogel. The DNA hydrogel cloaks the CTCs, facilitating quantification with minimal cell damage. This method can be used to quantitively identify as few as 10 MCF-7 cells in a 2-µL blood sample. Decloaking of tumor cells via gentle chemical stimulus (ATP) is used to release living tumor cells for subsequent cell culture and live-cell analysis. We also describe how to use the protocol to encapsulate and release cells of cancer cell lines, which can be used in preliminary experiments to model CTCs. The whole protocol takes ~2.5 d to complete, including downstream cell culture and analysis.


Asunto(s)
Separación Celular/métodos , ADN/química , Hidrogeles/química , Células Neoplásicas Circulantes/patología , Cápsulas , Supervivencia Celular , Humanos , Células MCF-7 , Hibridación de Ácido Nucleico
19.
J Am Chem Soc ; 142(22): 9975-9981, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32369359

RESUMEN

Intracellular DNA-based hybridization reactions generally occur under tension rather than in free states, which are spatiotemporally controlled in physiological conditions. However, how nanomechanical forces affect DNA hybridization efficiencies in in-vitro DNA assays, for example, biosensors or biochips, remains largely elusive. Here, we design DNA framework-based nanomechanical handles that can control the stretching states of DNA molecules. Using a pair of tetrahedral DNA framework (TDF) nanostructured handles, we develop bridge DNA sensors that can capture target DNA with ultrafast speed and high efficiency. We find that the rigid TDF handles bind two ends of a single-stranded DNA (ssDNA) and hold it in a stretched state, with an apparent stretching length comparable to its counterpart of double-stranded DNA (dsDNA) via atomic force microscopy measurement. The DNA stretching effect of ssDNA is then monitored using single-molecule fluorescence energy transfer (FRET), resulting in decreased FRET efficiency in the stretched ssDNA. By controlling the stretching state of ssDNA, we obtained significantly improved hybridization kinetics (within 1 min) and hybridization efficiency (∼98%) under the target concentration of 500 nM. The bridge DNA sensors demonstrated high sensitivity (1 fM), high specificity (single mismatch mutation discrimination), and high selectivity (suitable for the detection in serum and blood) under the target concentration of 10 nM. Controlling the stretching state of ssDNA shows great potential in biosensors, bioimaging, and biochips applications.


Asunto(s)
Técnicas Biosensibles , ADN/análisis , Transferencia Resonante de Energía de Fluorescencia , Hibridación de Ácido Nucleico
20.
Angew Chem Int Ed Engl ; 59(26): 10406-10410, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32187784

RESUMEN

Molecular recognition in cell biological process is characterized with specific locks-and-keys interactions between ligands and receptors, which are ubiquitously distributed on cell membrane with topological clustering. Few topologically-engineered ligand systems enable the exploration of the binding strength between ligand-receptor topological organization. Herein, we generate topologically controlled ligands by developing a family of tetrahedral DNA frameworks (TDFs), so the multiple ligands are stoichiometrically and topologically arranged. This topological control of multiple ligands changes the nature of the molecular recognition by inducing the receptor clustering, so the binding strength is significantly improved (ca. 10-fold). The precise engineering of topological complexes formed by the TDFs are readily translated into effective binding control for cell patterning and binding strength control of cells for cell sorting. This work paves the way for the development of versatile design of topological ligands.


Asunto(s)
Separación Celular/métodos , ADN/química , Aptámeros de Nucleótidos/química , Línea Celular Tumoral , Humanos , Ligandos , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...