Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomicro Lett ; 16(1): 246, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007981

RESUMEN

Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms. Nanomaterials (NMs) have been engineered to monitor macrophage metabolism, enabling the evaluation of disease progression and the replication of intricate physiological signal patterns. They achieve this either directly or by delivering regulatory signals, thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy. However, a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking. This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy. We initially explore the relationship between metabolism, polarization, and disease, before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy. Finally, we discuss the prospects and challenges of NM-mediated metabolic immunotherapy, aiming to accelerate clinical translation. We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.

2.
ACS Nano ; 18(26): 16967-16981, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38888082

RESUMEN

Selective generation of sufficient pyroptosis inducers at the tumor site without external stimulation holds immense significance for a longer duration of immunotherapy. Here, we report a cascade-amplified pyroptosis inducer CSCCPT/SNAP that utilizes reactive nitrogen species (RNS), self-supplied from the diffusion-controlled reaction between reactive oxygen species (ROS) and nitric oxide (NO) to potentiate pyroptosis and immunotherapy, while both endogenous mitochondrial ROS stimulated by released camptothecin and released NO initiate pyroptosis. Mechanistically, cascade amplification of the antitumor immune response is prompted by the cooperation of ROS and NO and enhanced by RNS with a long lifetime, which could be used as a pyroptosis trigger to effectively compensate for the inherent drawbacks of ROS, resulting in long-lasting pyroptosis for favoring immunotherapy. Tumor growth is efficiently inhibited in mouse melanoma tumors through the facilitation of reactive oxygen/nitrogen species (RONS)-NO synergy. In summary, our therapeutic approach utilizes supramolecular engineering and nanotechnology to integrate ROS producers and NO donors of tumor-specific stimulus responses into a system that guarantees synchronous generation of these two reactive species to elicit pyroptosis-evoked immune response, while using self-supplied RNS as a pyroptosis amplifier. RONS-NO synergy achieves enhanced and sustained pyroptosis and antitumor immune responses for robust cancer immunotherapy.


Asunto(s)
Inmunoterapia , Estrés Oxidativo , Piroptosis , Especies de Nitrógeno Reactivo , Microambiente Tumoral , Piroptosis/efectos de los fármacos , Animales , Especies de Nitrógeno Reactivo/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Melanoma Experimental/terapia , Melanoma Experimental/inmunología , Melanoma Experimental/patología
3.
Bioact Mater ; 39: 392-405, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38855060

RESUMEN

Retinal neovascularization (RNV), a typical pathological manifestation involved in most neovascular diseases, causes retinal detachment, vision loss, and ultimately irreversible blindness. Repeated intravitreal injections of anti-VEGF drugs were developed against RNV, with limitations of incomplete responses and adverse effects. Therefore, a new treatment with a better curative effect and more prolonged dosage is demanding. Here, we induced macrophage polarization to anti-inflammatory M2 phenotype by inhibiting cGAS-STING signaling with an antagonist C176, appreciating the role of cGAS-STING signaling in the retina in pro-inflammatory M1 polarization. C176-loaded and phosphatidylserine-modified dendritic mesoporous silica nanoparticles were constructed and examined by a single intravitreal injection. The biosafe nanoparticles were phagocytosed by retinal macrophages through a phosphatidylserine-mediated "eat me" signal, which persistently release C176 to suppress STING signaling and thereby promote macrophage M2 polarization specifically. A single dosage can effectively alleviate pathological angiogenesis phenotypes in murine oxygen-induced retinopathy models. In conclusion, these C176-loaded nanoparticles with enhanced cell uptake and long-lasting STING inhibition effects might serve as a promising way for treating RNV.

4.
Small Methods ; : e2400610, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923867

RESUMEN

Bacterial therapy is recognized as a cost-effective treatment for several diseases. However, its development is hindered by limited functionality, weak inherent therapeutic effects, and vulnerability to harsh microenvironmental conditions, leading to suboptimal treatment activity. Enhancing bacterial activity and therapeutic outcomes emerges as a pivotal challenge. Nanozymes have garnered significant attention due to their enzyme-mimic activities and high stability. They enable bacteria to mimic the functions of gene-edited bacteria expressing the same functional enzymes, thereby improving bacterial activity and therapeutic efficacy. This review delineates the therapeutic mechanisms of bacteria and nanozymes, followed by a summary of strategies for preparing bacteria/nanozyme composites. Additionally, the synergistic effects of such composites in biomedical applications such as gastrointestinal diseases and tumors are highlighted. Finally, the challenges of bacteria/nanozyme composites are discussed and propose potential solutions. This study aims to provide valuable insights to offer theoretical guidance for the advancement of nanomaterial-assisted bacterial therapy.

5.
ACS Nano ; 18(24): 15864-15877, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38829727

RESUMEN

Triple-negative breast cancer (TNBC) is a highly aggressive malignancy that lacks effective targeted therapies. Inducing immunogenic cell death (ICD) in tumor cells represents a promising strategy to enhance therapeutic efficacy by promoting antitumor immunity. Paclitaxel (PTX), a commonly used chemotherapy drug for TNBC, can induce ICD; however, the resulting immunogenicity is limited. Thus, there is an urgent need to explore strategies that improve the effectiveness of ICD in TNBC by incorporating immunoregulatory agents. This study investigated the potential of celecoxib (CXB) to enhance PTX-induced ICD by blocking the biosynthesis of PGE2 in the tumor cells. We observed that the combination of CXB and PTX promoted the maturation of dendritic cells and primed a T cell-dependent immune response, leading to enhanced tumor rejection in a vaccination assay. To further optimize drug delivery in vivo, we developed cRGD-modified liposomes for the targeted codelivery of CXB and PTX. This delivery system significantly improved drug accumulation and triggered robust antitumor immunity in an orthotopic mouse model of TNBC. Moreover, it served as an in situ vaccine to inhibit tumor recurrence and lung metastasis. Overall, our findings provide in-depth insights into the therapeutic mechanism underlying the combination of CXB and PTX, highlighting their potential as effective immune-based therapies for TNBC.


Asunto(s)
Celecoxib , Muerte Celular Inmunogénica , Paclitaxel , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Celecoxib/farmacología , Celecoxib/química , Celecoxib/administración & dosificación , Paclitaxel/farmacología , Paclitaxel/química , Animales , Ratones , Muerte Celular Inmunogénica/efectos de los fármacos , Humanos , Femenino , Línea Celular Tumoral , Ratones Endogámicos BALB C , Liposomas/química
6.
Adv Mater ; : e2402720, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38734937

RESUMEN

The efficacy of photodynamic therapy (PDT)-related cancer therapies is significantly restricted by two irreconcilable obstacles, i.e., low reactive oxygen species (ROS) generation capability and hypoxia which constrains the immune response. Herein, this work develops a self-assembled clinical photosensitizer indocyanine green (ICG) and the HSP90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) nanoparticles (ISDN) without any excipient. This work discovers that the hydrophobic interaction forces between ICG and 17-DMAG promote the photostability of ICG and its intersystem crossing (ISC) process, thereby improving the ROS quantum yield from 0.112 to 0.46. Augmented ROS generation enhances PDT efficacy and further enhances immunogenic cell death (ICD) effects. 17-DMAG inhibits the HSP90/hypoxia-inducible factor 1α (HIF-1α) axis to dramatically reverse the immunosuppressive tumor microenvironment caused by PDT-aggravated hypoxia. In a mouse model of pancreatic cancer, ISDN markedly improve cytotoxic T lymphocyte infiltration and MHC I and MHC II activation, demonstrating the superior ICD effects in situ tumor and the powerful systematic antitumor immunity generation, eventually achieving vigorous antitumor and recurrence resistance. This study proposes an unsophisticated and versatile strategy to significantly improve PDT efficacy for enhancing systemic antitumor immunity and potentially extending it to multiple cancers.

7.
Adv Sci (Weinh) ; 11(24): e2306675, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38647399

RESUMEN

The blood brain barrier (BBB) limits the application of most therapeutic drugs for neurological diseases (NDs). Hybrid cell membrane-coated nanoparticles derived from different cell types can mimic the surface properties and functionalities of the source cells, further enhancing their targeting precision and therapeutic efficacy. Neuroinflammation has been increasingly recognized as a critical factor in the pathogenesis of various NDs, especially Alzheimer's disease (AD). In this study, a novel cell membrane coating is designed by hybridizing the membrane from platelets and chemokine (C-C motif) receptor 2 (CCR2) cells are overexpressed to cross the BBB and target neuroinflammatory lesions. Past unsuccessful endeavors in AD drug development underscore the challenge of achieving favorable outcomes when utilizing single-mechanism drugs.Two drugs with different mechanisms of actions into liposomes are successfully loaded to realize multitargeting treatment. In a transgenic mouse model for familial AD (5xFAD), the administration of these drug-loaded hybrid cell membrane liposomes results in a significant reduction in amyloid plaque deposition, neuroinflammation, and cognitive impairments. Collectively, the hybrid cell membrane-coated nanomaterials offer new opportunities for precise drug delivery and disease-specific targeting, which represent a versatile platform for targeted therapy in AD.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Modelos Animales de Enfermedad , Liposomas , Ratones Transgénicos , Nanopartículas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Ratones , Nanopartículas/química , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Humanos
9.
Adv Healthc Mater ; 13(17): e2304136, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38551143

RESUMEN

Oncolytic virus therapy is currently regarded as a promising approach in cancer immunotherapy. It has greater therapeutic advantages for colorectal cancer that is prone to distant metastasis. However, the therapeutic efficacy and clinical application of viral agents alone for colorectal cancer remain suboptimal. In this study, an engineered oncolytic vaccinia virus (OVV-Luc) that expresses the firefly luciferase gene is developed and loaded Chlorin e6 (Ce6) onto the virus surface through covalent coupling, resulting in OVV-Luc@Ce6 (OV@C). The OV@C infiltrates tumor tissue and induces endogenous luminescence through substrate catalysis, resulting in the production of reactive oxygen species. This unique system eliminates the need for an external light source, making it suitable for photodynamic therapy (PDT) in deep tissues. Moreover, this synergistic effect between PDT and viral immunotherapy enhances dendritic cell maturation, macrophage polarization, and reversal of the immunosuppressive microenvironment. This synergistic effect has the potential to convert a "cold" into a "hot" tumor, it offers valuable insights for clinical translation and application.


Asunto(s)
Neoplasias Colorrectales , Inmunoterapia , Viroterapia Oncolítica , Virus Oncolíticos , Fotoquimioterapia , Virus Vaccinia , Virus Vaccinia/genética , Virus Vaccinia/fisiología , Fotoquimioterapia/métodos , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/patología , Animales , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Oncolíticos/fisiología , Humanos , Inmunoterapia/métodos , Ratones , Clorofilidas , Línea Celular Tumoral , Porfirinas/química , Porfirinas/farmacología , Ratones Endogámicos BALB C , Terapia Combinada/métodos , Especies Reactivas de Oxígeno/metabolismo , Femenino
10.
Adv Mater ; 36(23): e2311574, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38433564

RESUMEN

Dendritic cell (DC) maturation is a crucial process for antigen presentation and the initiation of T cell-mediated immune responses. Toll-like receptors play pivotal roles in stimulating DC maturation and promoting antigen presentation. Here, a novel message RNA (mRNA) cancer vaccine is reported that boosts antitumor efficacy by codelivering an mRNA encoding tumor antigen and a TLR7/8 agonist (R848) to DC using supramolecular lipid nanoparticles (SMLNP) as a delivery platform, in which a new ionizable lipid (N2-3L) remarkably enhances the translation efficiency of mRNA and a ß-cyclodextrin (ß-CD)-modified ionizable lipid (Lip-CD) encapsulates R848. The incorporation of R848 adjuvant into the mRNA vaccine through noncovalent host-guest complexation significantly promotes DC maturation and antigen presentation after vaccination, thus resulting in superior antitumor efficacy in vivo. Moreover, the antitumor efficacy is further boosted synergized with immune checkpoint blockade by potentiating the anticancer capability of cytotoxic T lymphocytes infiltrated in tumor sites. This work indicates that SMLNP shows brilliant potential as next-generation delivery system in the development of mRNA vaccines with high efficacy.


Asunto(s)
Vacunas contra el Cáncer , Células Dendríticas , Imidazoles , Inmunoterapia , Lípidos , Nanopartículas , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Animales , Nanopartículas/química , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Ratones , Lípidos/química , Imidazoles/química , Vacunas de ARNm/química , beta-Ciclodextrinas/química , ARN Mensajero/genética , ARN Mensajero/química , Neoplasias/terapia , Línea Celular Tumoral , Antígenos de Neoplasias/inmunología , Humanos , Ratones Endogámicos C57BL , Liposomas
11.
ACS Appl Bio Mater ; 7(3): 1778-1789, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38437514

RESUMEN

Inspired by the two kinds of naturally occurring peroxidases (POD) with vanadium or heme (iron)-based active catalytic centers, we have developed a dual metal-based nanozyme with dual V and Fe-based active catalytic centers. Co-doping of graphene with heteroatoms has a synergistic effect on the catalytic properties of the nanomaterial as the distances of migration of the substrates drastically reduce. However, a few studies have reported the codoping of heterometallic elements in the graphene structure due to the complexity of the synthesis procedures. Herein, we report the synthesis of in situ doped bimetallic VNFe@C mesoporous graphitic spheroids nanozyme via pyrolysis without the assistance of any template assisted method. The Prussian-blue analog-based precursor material was synthesized by a facile one-step low-temperature synthesis procedure. The bimetallic spheroids showed an excellent affinity toward H2O2, with a Km value of 0.26 mM when compared to 0.436 for the natural POD, which is much better than the natural POD, which was utilized to detect tumor cells in vitro through the intracellular H2O2 produced by these cells under high oxidative stress. The VNFe@C mesoporous spheroids generate dual reactive oxygen species, including the •OH and •O2H- radicals, in the presence of H2O2, which are responsible for the POD-like activity of these nanozymes, while the bimetallic V/Fe doping plays a synergistic role in the enhancement of the activity of codoped graphitic spheroids.


Asunto(s)
Grafito , Peroxidasa , Peróxido de Hidrógeno , Peroxidasas , Catálisis
12.
Nat Mater ; 23(6): 844-853, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38448658

RESUMEN

Lymph nodes are crucial organs of the adaptive immune system, orchestrating T cell priming, activation and tolerance. T cell activity and function are highly regulated by lymph nodes, which have a unique structure harbouring distinct cells that work together to detect and respond to pathogen-derived antigens. Here we show that implanted patient-derived freeze-dried lymph nodes loaded with chimeric antigen receptor T cells improve delivery to solid tumours and inhibit tumour recurrence after surgery. Chimeric antigen receptor T cells can be effectively loaded into lyophilized lymph nodes, whose unaltered meshwork and cytokine and chemokine contents promote chimeric antigen receptor T cell viability and activation. In mouse models of cell-line-derived human cervical cancer and patient-derived pancreatic cancer, delivery of chimeric antigen receptor T cells targeting mesothelin via the freeze-dried lymph nodes is more effective in preventing tumour recurrence when compared to hydrogels containing T-cell-supporting cytokines. This tissue-mediated cell delivery strategy holds promise for controlled release of various cells and therapeutics with long-term activity and augmented function.


Asunto(s)
Liofilización , Ganglios Linfáticos , Mesotelina , Receptores Quiméricos de Antígenos , Animales , Humanos , Ratones , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Ganglios Linfáticos/inmunología , Linfocitos T/inmunología , Linfocitos T/citología , Línea Celular Tumoral , Femenino , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología
13.
Bioact Mater ; 36: 272-286, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38496034

RESUMEN

Nanoliposomes have a broad range of applications in the treatment of autoimmune inflammatory diseases because of their ability to considerably enhance drug transport. For their clinical application, nanoliposomes must be able to realize on-demand release of drugs at disease sites to maximize drug-delivery efficacy and minimize side effects. Therefore, responsive drug-release strategies for inflammation treatment have been explored; however, no specific design has been realized for a responsive drug-delivery system based on pyroptosis-related inflammation. Herein, we report a pioneering strategy for self-adaptive pyroptosis-responsive liposomes (R8-cardiolipin-containing nanoliposomes encapsulating dimethyl fumarate, RC-NL@DMF) that precisely release encapsulated anti-pyroptotic drugs into pyroptotic cells. The activated key pyroptotic protein, the N-terminal domain of gasdermin E, selectively integrates with the cardiolipin of liposomes, thus forming pores for controlled drug release, pyroptosis, and inflammation inhibition. Therefore, RC-NL@DMF exhibited effective therapeutic efficacies to alleviate autoimmune inflammatory damages in zymosan-induced arthritis mice and dextran sulfate sodium-induced inflammatory bowel disease mice. Our novel approach holds great promise for self-adaptive pyroptosis-responsive on-demand drug delivery, suppressing pyroptosis and treating autoimmune inflammatory diseases.

14.
Nat Chem Biol ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538923

RESUMEN

Telomere dysfunction is intricately linked to the aging process and stands out as a prominent cancer hallmark. Here we demonstrate that telomerase activity is differentially regulated in cancer and normal cells depending on the expression status of fructose-1,6-bisphosphatase 1 (FBP1). In FBP1-expressing cells, FBP1 directly interacts with and dephosphorylates telomerase reverse transcriptase (TERT) at Ser227. Dephosphorylated TERT fails to translocate into the nucleus, leading to the inhibition of telomerase activity, reduction in telomere lengths, enhanced senescence and suppressed tumor cell proliferation and growth in mice. Lipid nanoparticle-mediated delivery of FBP1 mRNA inhibits liver tumor growth. Additionally, FBP1 expression levels inversely correlate with TERT pSer227 levels in renal and hepatocellular carcinoma specimens and with poor prognosis of the patients. These findings demonstrate that FBP1 governs cell immortality through its protein phosphatase activity and uncover a unique telomerase regulation in tumor cells attributed to the downregulation or deficiency of FBP1 expression.

15.
Adv Sci (Weinh) ; 11(20): e2305382, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493499

RESUMEN

Insufficient tumor immunogenicity and immune escape from tumors remain common problems in all tumor immunotherapies. Recent studies have shown that pyroptosis, a form of programmed cell death that is accompanied by immune checkpoint inhibitors, can induce effective immunogenic cell death and long-term immune activation. Therapeutic strategies to jointly induce pyroptosis and reverse immunosuppressive tumor microenvironments are promising for cancer immunotherapy. In this regard, a dual-responsive supramolecular polymeric nanomedicine (NCSNPs) to self-cascade amplify the benefits of cancer immunotherapy is designed. The NCSNPs are formulated by ß-cyclodextrin coupling nitric oxide (NO) donor, a pyroptosis activator, and NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor, and self-assembled through host-guest molecular recognition and hydrophobic interaction to obtain nanoparticles. NCSNPs possess excellent tumor accumulation and bioavailability attributed to ingenious supramolecular engineering. The study not only confirms the occurrence of NO-triggered pyroptosis in tumors for the first time but also reverses the immunosuppressive microenvironment in tumor sites via an IDO inhibitor by enhancing the infiltration of cytotoxic T lymphocytes, to achieve remarkable inhibition of tumor proliferation. Thus, this study provides a novel strategy for cancer immunotherapy.


Asunto(s)
Inmunoterapia , Nanomedicina , Polímeros , Microambiente Tumoral , Inmunoterapia/métodos , Ratones , Animales , Nanomedicina/métodos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Polímeros/química , Piroptosis/efectos de los fármacos , Nanopartículas/química , Modelos Animales de Enfermedad , Neoplasias/terapia , Neoplasias/inmunología , beta-Ciclodextrinas/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Imidazoles , Isoindoles
16.
Adv Mater ; 36(23): e2310189, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38414097

RESUMEN

Stimulating the cyclic guanosine monophophate(GMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway is a crucial strategy by which bacteria activate the tumor immune system. However, the limited stimulation capability poses significant challenges in advancing bacterial immunotherapy. Here, an adenosine 5'-triphosphate (ATP)-responsive manganese (Mn)-based bacterial material (E. coli@PDMC-PEG (polyethylene glycol)) is engineered successfully, which exhibits an exceptional ability to synergistically activate the cGAS-STING pathway. In the tumor microenvironment, which is characterized by elevated ATP levels, this biohybrid material degrades, resulting in the release of divalent manganese ions (Mn2+) and subsequent bacteria exposure. This combination synergistically activates the cGAS-STING pathway, as Mn2+ enhances the sensitivity of cGAS to the extracellular DNA (eDNA) secreted by the bacteria. The results of the in vivo experiments demonstrate that the biohybrid materials E. coli@PDMC-PEG and VNP20009@PDMC-PEG effectively inhibit the growth of subcutaneous melanoma in mice and in situ liver cancer in rabbits. Valuable insights for the development of bacteria-based tumor immunotherapy are provided here.


Asunto(s)
Adenosina Trifosfato , Escherichia coli , Inmunoterapia , Manganeso , Proteínas de la Membrana , Nucleotidiltransferasas , Animales , Nucleotidiltransferasas/metabolismo , Manganeso/química , Ratones , Adenosina Trifosfato/metabolismo , Proteínas de la Membrana/metabolismo , Conejos , Línea Celular Tumoral , Polietilenglicoles/química , Transducción de Señal/efectos de los fármacos , Humanos , Microambiente Tumoral/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo
17.
Mol Cancer Ther ; 23(6): 780-790, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38310642

RESUMEN

Hepatocellular carcinoma (HCC) is a malignant tumor with a complex and diverse immunosuppressive microenvironment. Tumor-associated macrophages (TAM) are an essential component of the tumor immune microenvironment. TAMs typically exist in two primary states: anti-tumor M1 macrophages and protumor M2 macrophages. Remarkably, TAMs possess high plasticity, enabling them to switch between different subtypes or alter their biological functions in response to the tumor microenvironment. Based on research into the biological role of TAMs in the occurrence and development of malignant tumors, including HCC, TAMs are emerging as promising targets for novel tumor treatment strategies. In this review, we provide a detailed introduction to the origin and subtypes of TAMs, elucidate their interactions with other cells in the complex tumor microenvironment of HCC, and describe the biological roles, characteristics, and mechanisms of TAMs in the progression of HCC. Furthermore, we furnish an overview of the latest therapeutic strategies targeting TAMs.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Microambiente Tumoral , Macrófagos Asociados a Tumores , Animales , Humanos , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Terapia Molecular Dirigida , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo
18.
Adv Mater ; 36(19): e2310443, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38372054

RESUMEN

Liver fibrosis represents a reversible stage of various chronic liver diseases that progresses to cirrhosis. This condition is characterized by an imbalance between tissue damage and repair, and the production of fibers in the liver exceeds their degradation. Oxidative stress (OS) resulting from tissue injury and endoplasmic reticulum stress (ERS) triggered by the overproduction of proteins are pivotal factors in liver fibrosis. Melatonin demonstrates the capability to neutralize free radicals, shielding cells from oxidative harm. It is also a specific inhibitor of the ERS receptor transcription activating factor 6 (ATF6), indicating its great potential in ameliorating liver fibrosis. However, its limited water solubility and oral bioavailability of under 15% present hurdles in achieving therapeutic blood concentrations for treating liver fibrosis. The PLGA@Melatonin is constructed by loading melatonin with poly (lactic-co-glycolic acid) (PLGA). Platelet membranes (PM) and activated hepatic stellate cell membranes (HSCM) with high expression of the platelet-derived growth factor receptor (PDGFR) are extracted to successfully construct PM@PLGA@Melatonin and HSCM@PLGA@Melatonin, which are subsequently utilized to treat mice with liver fibrosis. The results illustrated the remarkable therapeutic effects of the two nanoparticles on liver fibrosis, along with their excellent targeting and biosafety properties.


Asunto(s)
Membrana Celular , Estrés del Retículo Endoplásmico , Cirrosis Hepática , Melatonina , Nanopartículas , Estrés Oxidativo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Animales , Estrés Oxidativo/efectos de los fármacos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Melatonina/farmacología , Melatonina/química , Ratones , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Estrés del Retículo Endoplásmico/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Humanos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos
19.
Chem Soc Rev ; 53(7): 3224-3252, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38379286

RESUMEN

Neoantigens play a pivotal role in the field of tumour therapy, encompassing the stimulation of anti-tumour immune response and the enhancement of tumour targeting capability. Nonetheless, numerous factors directly influence the effectiveness of neoantigens in bolstering anti-tumour immune responses, including neoantigen quantity and specificity, uptake rates by antigen-presenting cells (APCs), residence duration within the tumour microenvironment (TME), and their ability to facilitate the maturation of APCs for immune response activation. Nanotechnology assumes a significant role in several aspects, including facilitating neoantigen release, promoting neoantigen delivery to antigen-presenting cells, augmenting neoantigen uptake by dendritic cells, shielding neoantigens from protease degradation, and optimizing interactions between neoantigens and the immune system. Consequently, the development of nanotechnology synergistically enhances the efficacy of neoantigens in cancer theranostics. In this review, we provide an overview of neoantigen sources, the mechanisms of neoantigen-induced immune responses, and the evolution of precision neoantigen-based nanomedicine. This encompasses various therapeutic modalities, such as neoantigen-based immunotherapy, phototherapy, radiotherapy, chemotherapy, chemodynamic therapy, and other strategies tailored to augment precision in cancer therapeutics. We also discuss the current challenges and prospects in the application of neoantigen-based precision nanomedicine, aiming to expedite its clinical translation.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Antígenos de Neoplasias , Medicina de Precisión , Neoplasias/diagnóstico , Neoplasias/terapia , Inmunoterapia , Nanotecnología , Microambiente Tumoral
20.
Hepatology ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407233

RESUMEN

BACKGROUND AND AIMS: Liver ischemia-reperfusion injury (IRI) is a common complication of liver transplantation and hepatectomy and causes acute liver dysfunction and even organ failure. Myeloid-derived suppressor cells (MDSCs) accumulate and play immunosuppressive function in cancers and inflammation. However, the role of MDSCs in liver IRI has not been defined. APPROACH AND RESULTS: We enrolled recipients receiving OLT and obtained the pre-OLT/post-OLT blood and liver samples. The proportions of MDSCs were significantly elevated after OLT and negatively associated with liver damage. In single-cell RNA-sequencing analysis of liver samples during OLT, 2 cell clusters with MDSC-like phenotypes were identified and showed maturation and infiltration in post-OLT livers. In the mouse model, liver IRI mobilized MDSCs and promoted their infiltration in the damaged liver, and intrahepatic MDSCs were possessed with enhanced immunosuppressive function by upregulation of STAT3 signaling. Under treatment with αGr-1 antibody or adoptive transfer MDSCs to change the proportion of MDSCs in vivo, we found that intrahepatic MDSCs alleviated liver IRI-induced inflammation and damage by inhibiting M1 macrophage polarization. Mechanistically, bulk RNA-sequencing analysis and in vivo experiments verified that C-X-C motif chemokine ligand 17 (CXCL17) was upregulated by YAP/TEAD1 signaling and subsequently recruited MDSCs through binding with GPR35 during liver IRI. Moreover, hepatic endothelial cells were the major cells responsible for CXCL17 expression in injured livers, among which hypoxia-reoxygenation stimulation activated the YAP/TEAD1 complex to promote CXCL17 transcription. CONCLUSIONS: Endothelial YAP/TEAD1-CXCL17 signaling recruited MDSCs to attenuate liver IRI, providing evidence of therapeutic potential for managing IRI in liver surgery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...