Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 15(5): 570-5, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26928637

RESUMEN

A primary atomic-scale effect accompanying Li-ion insertion into rechargeable battery electrodes is a significant intercalation-induced change of the unit cell volume of the crystalline material. This generates a variety of secondary multiscale dimensional changes and causes a deterioration in the energy storage performance stability. Although traditional in situ height-sensing techniques (atomic force microscopy or electrochemical dilatometry) are able to sense electrode thickness changes at a nanometre scale, they are much less informative concerning intercalation-induced changes of the porous electrode structure at a mesoscopic scale. Based on a electrochemical quartz-crystal microbalance with dissipation monitoring on multiple overtone orders, herein we introduce an in situ hydrodynamic spectroscopic method for porous electrode structure characterization. This new method will enable future developments and applications in the fields of battery and supercapacitor research, especially for diagnostics of viscoelastic properties of binders for composite electrodes and probing the micromechanical stability of their internal electrode porous structure and interfaces.

2.
Chemphyschem ; 14(5): 1043-54, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23420610

RESUMEN

An electrochemical study of Au electrodes electrografted with azobenzene (AB), Fast Garnet GBC (GBC) and Fast Black K (FBK) diazonium compounds is presented. Electrochemical quartz crystal microbalance, ellipsometry and atomic force microscopy investigations reveal the formation of multilayer films. The elemental composition of the aryl layers is examined by X-ray photoelectron spectroscopy. The electrochemical measurements reveal a quasi-reversible voltammogram of the Fe(CN)6 (3-/4-) redox couple on bare Au and a sigmoidal shape for the GBC- and FBK-modified Au electrodes, thus demonstrating that electron transfer is blocked due to the surface modification. The electrografted AB layer results in strongest inhibition of the Fe(CN)6 (3-/4-) response compared with other aryl layers. The same tendencies are observed for oxygen reduction; however, the blocking effect is not as strong as in the Fe(CN)6 (3-/4-) redox system. The electrochemical impedance spectroscopy measurements allowed the calculation of low charge-transfer rates to the Fe(CN)6 (3-) probe for the GBC- and FBK-modified Au electrodes in relation to bare Au. From these measurements it can be concluded that the FBK film is less compact or presents more pinholes than the electrografted GBC layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...