Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(8): 9162-9178, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39194759

RESUMEN

Cutaneous hypersensitivity reactions (CHRs) are complex inflammatory skin disorders that affect humans and dogs. This study examined the inflammatory and immune responses leading to skin damage, inflammation, and irritation by investigating gene expression through quantitative PCR (qPCR) and protein localization through the immunohistochemistry (IHC) of specific receptors and molecules involved in CHRs. Formalin-fixed paraffin-embedded (FFPE) samples from canine CHR skin (n = 20) and healthy dog skin (n = 3) were analyzed for expression levels of eight genes, including members of the pattern recognition receptor (PRR) family, CD209 and CLEC4G, the Regakine-1-like chemokine, and acute phase proteins (APPs), LBP-like and Hp-like genes. Additionally, we examined the local involvement of IL-6, Janus Kinase 1 (JAK1), and the signal transducer activator of transcription 3 (STAT3) in the CHR cases. The study demonstrated statistically significant increases in the expression levels of CD209, Hp-like (p < 0.01), LBP-like, Regakine-1-like, and CLEC4G (p < 0.05) genes in CHRs compared to healthy controls. Conversely, IL-6, JAK1, and STAT3 showed no significant difference between the two groups (p > 0.05). Protein analysis revealed JAK1 and STAT3 expression in CHR hyperplastic epithelial cells, dermal fibroblasts, and endothelial cells of small capillaries, indicating a possible involvement in the JAK/STAT pathway in local inflammatory response regulation. Our findings suggest that the skin plays a role in the development of CHRs.

2.
Domest Anim Endocrinol ; 89: 106877, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39068905

RESUMEN

Nerve growth factor (NGF) has long been known as the main ovulation-inducing factor in induced ovulation species, however, recent studies suggested the NGF role also in those with spontaneous ovulation. The first aim of this study was to evaluate the presence and gene expression of NGF and its cognate receptors, high-affinity neurotrophic tyrosine kinase 1 receptor (NTRK1) and low-affinity p75 nerve growth factor receptor (p75NTR), in the ram genital tract. Moreover, the annual trend of NGF seminal plasma values was investigated to evaluate the possible relationship between the NGF production variations and the ram reproductive seasonality. The presence and expression of the NGF/receptors system was evaluated in the testis, epididymis, vas deferens ampullae, seminal vesicles, prostate, and bulbourethral glands through immunohistochemistry and real-time PCR (qPCR), respectively. Genital tract samples were collected from 5 adult rams, regularly slaughtered at a local abattoir. Semen was collected during the whole year weekly, from 5 different adult rams, reared in a breeding facility, with an artificial vagina. NGF seminal plasma values were assessed through the ELISA method. NGF, NTRK1 and p75NTR immunoreactivity was detected in all male organs examined. NGF-positive immunostaining was observed in the spermatozoa of the germinal epithelium, in the epididymis and the cells of the secretory epithelium of annexed glands, NTRK1 receptor showed a localization pattern like that of NGF, whereas p75NTR immunopositivity was localized in the nerve fibers and ganglia. NGF gene transcript was highest (p < 0.01) in the seminal vesicles and lowest (p < 0.01) in the testis than in the other tissues. NTRK1 gene transcript was highest (p < 0.01) in the seminal vesicles and lowest (p < 0.05) in all the other tissues examined. Gene expression of p75NTR was highest (p < 0.01) in the seminal vesicles and lowest (p < 0.01) in the testis and bulbourethral glands. NGF seminal plasma concentration was greater from January to May (p < 0.01) than in the other months. This study highlighted that the NGF system was expressed in the tissues of all the different genital tracts examined, confirming the role of NGF in ram reproduction. Sheep are short-day breeders, with an anestrus that corresponds to the highest seminal plasma NGF levels, thus suggesting the intriguing idea that this factor could participate in an inhibitory mechanism of male reproductive activity, activated during the female anestrus.


Asunto(s)
Genitales Masculinos , Factor de Crecimiento Nervioso , Receptor trkA , Estaciones del Año , Semen , Animales , Masculino , Semen/química , Semen/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo , Genitales Masculinos/metabolismo , Genitales Masculinos/química , Ovinos/metabolismo , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Receptor de Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/metabolismo , Regulación de la Expresión Génica/fisiología
3.
Gen Comp Endocrinol ; 348: 114452, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38246291

RESUMEN

Resistin (RETN), a recently discovered adipokine, is a cysteine-rich and secretory protein produced by adipocytes. RETN has been detected in several tissues, including human and laboratory animals' pancreas, wherein impairs glucose tolerance and insulin (INS) action and causes INS resistance. This study aims to evaluate the presence and expression of RETN in the pancreas of 15 adult female sheep reared on Apennine pastures, which show a decrease in their nutritional value due to the drought stress linked to the increasing summer aridity. The sheep were divided into 3 groups according to the diet they were subjected to: maximum pasture flowering (MxF) group, maximum pasture dryness (MxD) group, and experimental (Exp) group which received a feed supplementation in addition to the MxD group feeding. Immunohistochemistry and immunofluorescence were performed on formalin-fixed and paraffin-embedded sections of the pancreas to detect the RETN presence and to evaluate the co-localization of RETN with both glucagon (GCG)- and INS-producing cells. In addition, the expression of the three molecules was evaluated also in relation to different diets. RETN was observed only in the endocrine pancreas, showing a wide distribution throughout the pancreatic islets with few negative cells and the RETN producing cells colocalized with both α cells and ß cells. No differences in distribution and immunostaining intensity of RETN, GCG and INS were observed among the three groups. Quantitative PCR showed the expression of RETN, GCG and INS in all tested samples. No significant differences were observed for RETN and GCG among all three groups of sheep. Instead, a high statistically significant expression of INS was detected in the MxF group with respect to the Exp and MxD groups. These results highlight the localization of RETN in GCG- and INS-secreting cells involved in glucose homeostasis suggesting a modulatory role for RETN. Furthermore, the RETN expression is not influenced by food supplementation and thus is not affected by diet.


Asunto(s)
Islotes Pancreáticos , Resistina , Adulto , Animales , Femenino , Humanos , Ovinos , Resistina/metabolismo , Islotes Pancreáticos/metabolismo , Glucagón , Dieta/veterinaria , Glucosa
4.
Molecules ; 28(21)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37959856

RESUMEN

Genistein is a natural compound belonging to flavonoids, having antioxidant, anti-inflammatory, and anti-neoplastic properties. Genistein is considered a phytoestrogen. As such, genistein can bind estrogen receptors (ERα and ERß), although with a lower affinity than that of estradiol. Despite considerable work, the effects of genistein are not well established yet. This review aims to clarify the role of genistein on female and male reproductive functions in mammals. In females, at a high dose, genistein diminishes the ovarian activity regulating several pathway molecules, such as topoisomerase isoform I and II, protein tyrosine kinases (v-src, Mek-4, ABL, PKC, Syk, EGFR, FGFR), ABC, CFTR, Glut1, Glut4, 5α-reductase, PPAR-γ, mitogen-activated protein kinase A, protein histidine kinase, and recently circulating RNA-miRNA. The effect of genistein on pregnancy is still controversial. In males, genistein exerts an estrogenic effect by inducing testosterone biosynthesis. The interaction of genistein with both natural and synthetic endocrine disruptors has a negative effect on testis function. The positive effect of genistein on sperm quality is still in debate. In conclusion, genistein has a potentially beneficial effect on the mechanisms regulating the reproduction of females and males. However, this is dependent on the dose, the species, the route, and the time of administration.


Asunto(s)
Genisteína , Semen , Embarazo , Animales , Masculino , Femenino , Genisteína/farmacología , Semen/metabolismo , Fitoestrógenos/farmacología , Receptores de Estrógenos/metabolismo , Receptor alfa de Estrógeno/metabolismo , Reproducción , Mamíferos/metabolismo
5.
Phytochemistry ; 212: 113713, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37169138

RESUMEN

The potential antiviral effects of indole-3-carbinol (I3C), a phytochemical found in Cruciferous vegetables, were investigated. Fibroblasts and epithelial cells were co-cultured on Alvetex® scaffolds, to obtain ad hoc 3D in vitro platforms able to mimic the trachea and intestinal mucosae, which represent the primary structures involved in the coronavirus pathogenesis. The two barriers generated in vitro were treated with various concentrations of I3C for different incubation periods. A protective effect of I3C on both intestinal and trachea models was demonstrated. A significant reduction in the transcription of the two main genes belonging to the Homologous to E6AP C-terminus (HECT)-E3 ligase family members, namely NEDD4 E3 Ubiquitin Protein Ligase (NEDD4) and WW Domain Containing E3 Ubiquitin Protein Ligase 1 (WWP1), which promote virus matrix protein ubiquitination and inhibit viral egression, were detected. These findings indicate I3C potential effect in preventing coronavirus cell egression processes that inhibit viral production. Although further studies are needed to clarify the molecular mechanisms whereby HECT family members control virus life cycle, this work paves the way to the possible therapeutic use of new natural compounds that may reduce the clinical severity of future pandemics.


Asunto(s)
Antivirales , Brassicaceae , Coronavirus , Intestinos , Modelos Biológicos , Fitoquímicos , Tráquea , Verduras , Antivirales/farmacología , Brassicaceae/química , Coronavirus/efectos de los fármacos , Coronavirus/metabolismo , Técnicas In Vitro , Intestinos/efectos de los fármacos , Intestinos/metabolismo , Intestinos/virología , Fitoquímicos/farmacología , Tráquea/efectos de los fármacos , Tráquea/metabolismo , Tráquea/virología , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Verduras/química , Proteínas de la Matriz Viral/metabolismo , Reproducibilidad de los Resultados , Porcinos , Animales , Humanos , Técnicas de Cultivo Tridimensional de Células
6.
Animals (Basel) ; 13(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36830390

RESUMEN

Adiponectin (ADIPOQ) is a member adipocytokines, and its actions are supported by two receptors, ADIPOQ receptor 1 and -2, respectively (ADIPOR1 and -R2). Our study was performed to evaluate the ADIPOR1 presence and location and its gene expression in reproductive tissues of the male ram, during its non-breading season. The different portions of the male ram reproductive system (testis, epididymis, seminal vesicle, ampoule vas deferens, bulb-urethral gland) were collected in a slaughterhouse. Immunohistochemistry showed ADIPOR1 positive signals in the cytoplasm of all the glandular epithelial cells, with a location near the nucleus; in the testes, the positive reaction was evidenced in the cytoplasm in the basal portion of the germinal epithelial cells. The immune reaction intensity was highest (p < 0.001) in the prostate and seminal vesicles glands than that of other parts of the ram reproductive tract. RT-qPCR detected the ADIPOR1 transcript in the testes, epididymis, vas deferens, bulbourethral glands, seminal vesicles, and prostate; the expression levels were high (p < 0.01) in the prostate and low (p < 0.01) in the testis, epididymis, and bulbourethral glands. The present results evidenced the possible ADIPOQ/ADIPOR1 system's role in regulating the testicular activity of male rams during the non-breading season.

7.
Ann Anat ; 247: 152069, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36754242

RESUMEN

The growing summer drought stress is affecting the nutritional value of pastures, no longer sufficient to support the nutritional status of sheep in extensive rearing. Adipokines affect organ and tissue functionality can be useful to evaluate animal welfare and prompt an improvement in the management of the grazing animals. Leptin (Lep) is an adipokine mainly produced by adipose tissue that regulates food intake by an anorexigenic action. Lep has also been detected in the human and rat gastrointestinal tract, where it regulates the rate of gastric emptying. In this study, Lep system was evaluated in the abomasum of 15 adult sheep reared on Apennine pastures and subjected to different diets. Until the maximum pasture flowering (MxF group), the sheep fed on fresh forage; from that moment until the maximum pasture dryness (MxD group), the experimental group (Exp group) received a feed supplementation in addition to MxD group feeding. The Lep system was investigated in the abomasum samples by immunohistochemistry (IHC) and RT-qPCR. Double-label localisation of Lep and leptin receptor (LepR) with neuroendocrine hormones was conducted to distinguish the gland cell types. The analysis performed revealed the presence of Lep and LepR in the chief and neuroendocrine cells of the fundic glands of the abomasum. RT-qPCR evidenced the transcript for Lep and LepR also identifying the long isoform (LepRb). No significant differences were observed among the three groups of sheep subjected to different diets. The abundant immunostaining observed in the fundic glands suggests that the Lep intervenes in the regulation of abomasum in sheep with a similar pattern to monogastric species while long term food supplementation seems do not influence the local function of the Lep system. A better understanding of the gastrointestinal system can contribute to improving sheep management and optimising the sustainability of livestock production.


Asunto(s)
Abomaso , Leptina , Adulto , Animales , Humanos , Ratas , Ovinos , Leptina/metabolismo , Abomaso/metabolismo , Tejido Adiposo , Dieta
9.
Vet Res Commun ; 47(2): 929-935, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36331787

RESUMEN

Apelin, a member of the adipokine family, is a novel endogenous peptide which regulates the male reproductive system of mammals by interacting with a specific receptor. Recent studies have highlighted that apelin may play a role in the regulation of reproduction by reducing testosterone production and inhibiting LH secretion. To the best of our knowledge, there is no available data on the presence of the apelin and its receptor in canine testes. Therefore, the aim of this study was to reveal the presence of apelin and evaluate its distribution in the canine testes using immunohistochemical and RT-PCR techniques. For this purpose, five fertile and healthy male dogs were subjected to elective orchiectomy. The immunohistochemical reaction revealed the presence of apelin and its receptor in the canine testes. Apelin was localized in spermatids and spermatozoa with a positive signal in the "acrosomal bodies". As regards the apelin receptor, a positive immunoreaction was detected in the cytoplasm of the cells localized near to the basal membrane of the seminiferous tubules and in the cytoplasm of Leydig cells. The RT-PCR analysis showed the presence of transcripts for apelin and apelin receptor in all of the samples under study. A 35kDa band confirmed apelin receptor protein expression in all of the samples analysed. In conclusion, the paracrine and endocrine role of apelin and its cognate receptor on male reproduction reported in humans and laboratory animals could also be hypothesized in dogs.


Asunto(s)
Canidae , Testículo , Humanos , Perros , Animales , Masculino , Apelina/genética , Receptores de Apelina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Espermatozoides
10.
Phytochemistry ; 204: 113459, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183866

RESUMEN

Carotenoids are among the best-known pigments in nature, confer color to plants and animals, and are mainly derived from photosynthetic bacteria, fungi, algae, plants. Mammals cannot synthesize carotenoids. Carotenoids' source is only alimentary and after their assumption, they are mainly converted in retinal, retinol and retinoic acid, collectively known also as pro-vitamins and vitamin A, which play an essential role in tissue growth and regulate different aspects of the reproductive functions. However, their mechanisms of action and potential therapeutic effects are still unclear. This review aims to clarify the role of carotenoids in the male and female reproductive functions in species of veterinary interest. In female, carotenoids and their derivatives regulate not only folliculogenesis and oogenesis but also steroidogenesis. Moreover, they improve fertility by decreasing the risk of embryonic mortality. In male, retinol and retinoic acids activate molecular pathways related to spermatogenesis. Deficiencies of these vitamins have been correlated with degeneration of testis parenchyma with consequent absence of the mature sperm. Carotenoids have also been considered anti-antioxidants as they ameliorate the effect of free radicals. The mechanisms of action seem to be exerted by activating Kit and Stra8 pathways in both female and male. In conclusion, carotenoids have potentially beneficial effects for ameliorating ovarian and testes function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...