Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO Mol Med ; 15(2): e16111, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36601738

RESUMEN

Functional recovery following incomplete spinal cord injury (SCI) depends on the rewiring of motor circuits during which supraspinal connections form new contacts onto spinal relay neurons. We have recently identified a critical role of the presynaptic organizer FGF22 for the formation of new synapses in the remodeling spinal cord. Here, we now explore whether and how targeted overexpression of FGF22 can be used to mitigate the severe functional consequences of SCI. By targeting FGF22 expression to either long propriospinal neurons, excitatory interneurons, or a broader population of interneurons, we establish that FGF22 can enhance neuronal rewiring both in a circuit-specific and comprehensive way. We can further demonstrate that the latter approach can restore functional recovery when applied either on the day of the lesion or within 24 h. Our study thus establishes viral gene transfer of FGF22 as a new synaptogenic treatment for SCI and defines a critical therapeutic window for its application.


Asunto(s)
Traumatismos de la Médula Espinal , Humanos , Interneuronas/metabolismo , Interneuronas/patología , Neuronas/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia , Sinapsis/metabolismo
2.
Nat Commun ; 13(1): 2659, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551446

RESUMEN

Traumatic brain injury (TBI) results in deficits that are often followed by recovery. The contralesional cortex can contribute to this process but how distinct contralesional neurons and circuits respond to injury remains to be determined. To unravel adaptations in the contralesional cortex, we used chronic in vivo two-photon imaging. We observed a general decrease in spine density with concomitant changes in spine dynamics over time. With retrograde co-labeling techniques, we showed that callosal neurons are uniquely affected by and responsive to TBI. To elucidate circuit connectivity, we used monosynaptic rabies tracing, clearing techniques and histology. We demonstrate that contralesional callosal neurons adapt their input circuitry by strengthening ipsilateral connections from pre-connected areas. Finally, functional in vivo two-photon imaging demonstrates that the restoration of pre-synaptic circuitry parallels the restoration of callosal activity patterns. Taken together our study thus delineates how callosal neurons structurally and functionally adapt following a contralateral murine TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Cuerpo Calloso , Animales , Corteza Cerebral , Cuerpo Calloso/fisiología , Ratones , Neuronas/fisiología
3.
Sci Transl Med ; 12(539)2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32295897

RESUMEN

Spasticity, one of the most frequent comorbidities of spinal cord injury (SCI), disrupts motor recovery and quality of life. Despite major progress in neurorehabilitative and pharmacological approaches, therapeutic strategies for treating spasticity are lacking. Here, we show in a mouse model of chronic SCI that treatment with nimodipine-an L-type calcium channel blocker already approved from the European Medicine Agency and from the U.S. Food and Drug Administration-starting in the acute phase of SCI completely prevents the development of spasticity measured as increased muscle tone and spontaneous spasms. The aberrant muscle activities associated with spasticity remain inhibited even after termination of the treatment. Constitutive and conditional silencing of the L-type calcium channel CaV1.3 in neuronal subtypes demonstrated that this channel mediated the preventive effect of nimodipine on spasticity after SCI. This study identifies a treatment protocol and suggests that targeting CaV1.3 could prevent spasticity after SCI.


Asunto(s)
Bloqueadores de los Canales de Calcio , Espasticidad Muscular , Nimodipina , Traumatismos de la Médula Espinal , Animales , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio Tipo L , Ratones , Espasticidad Muscular/tratamiento farmacológico , Espasticidad Muscular/prevención & control , Nimodipina/uso terapéutico , Calidad de Vida , Médula Espinal , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/tratamiento farmacológico
4.
Bio Protoc ; 8(7): e2784, 2018 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-29795778

RESUMEN

Spinal cord injury (SCI) is characterized by multiple sensory/motor impairments that arise from different underlying neural mechanisms. Linking specific sensory/motor impairments to neural mechanism is limited by a lack of direct experimental access to these neural circuits. Here, we describe an experimental model which addresses this shortcoming. We generated a mouse model of chronic spinal cord injury that reliably reproduces spasticity observed after SCI, while at the same time allows study of motor impairments in vivo and in an in vitro preparation of the spinal cord. The model allows for the combination of mouse genetics in in vitro and in vivo conditions with advanced imaging, behavioral analysis, and detailed electrophysiology, techniques which are not easily applied in conventional SCI models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...