Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Brain ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753057

RESUMEN

Deubiquitination is critical for the proper functioning of numerous biological pathways such as DNA repair, cell cycle progression, transcription, signal transduction, and autophagy. Accordingly, pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders (ND) and congenital abnormalities. ATXN7L3 is a component of the DUB module of the SAGA complex, and two other related DUB modules, and serves as an obligate adaptor protein of 3 ubiquitin-specific proteases (USP22, USP27X or USP51). Through exome sequencing and GeneMatching, we identified nine individuals with heterozygous variants in ATXN7L3. The core phenotype included global motor and language developmental delay, hypotonia, and distinctive facial characteristics including hypertelorism, epicanthal folds, blepharoptosis, a small nose and mouth, and low-set posteriorly rotated ears. In order to assess pathogenicity, we investigated the effects of a recurrent nonsense variant [c.340C>T; p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired, as indicated by an increase in histone H2Bub1 levels. This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality. In conclusion, we present clinical information and biochemical characterization supporting ATXN7L3 variants in the pathogenesis of a rare syndromic ND.

2.
Nat Med ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745008

RESUMEN

The prevalence of comorbidities in individuals with neurodevelopmental disorders (NDDs) is not well understood, yet these are important for accurate diagnosis and prognosis in routine care and for characterizing the clinical spectrum of NDD syndromes. We thus developed PhenomAD-NDD, an aggregated database containing the comorbid phenotypic data of 51,227 individuals with NDD, all harmonized into Human Phenotype Ontology (HPO), with in total 3,054 unique HPO terms. We demonstrate that almost all congenital anomalies are more prevalent in the NDD population than in the general population, and the NDD baseline prevalence allows for an approximation of the enrichment of symptoms. For example, such analyses of 33 genetic NDDs show that 32% of enriched phenotypes are currently not reported in the clinical synopsis in the Online Mendelian Inheritance in Man (OMIM). PhenomAD-NDD is open to all via a visualization online tool and allows us to determine the enrichment of symptoms in NDD.

3.
Clin Genet ; 105(6): 655-660, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38384171

RESUMEN

Precise regulation of gene expression is important for correct neurodevelopment. 9q34.3 deletions affecting the EHMT1 gene result in a syndromic neurodevelopmental disorder named Kleefstra syndrome. In contrast, duplications of the 9q34.3 locus encompassing EHMT1 have been suggested to cause developmental disorders, but only limited information has been available. We have identified 15 individuals from 10 unrelated families, with 9q34.3 duplications <1.5 Mb in size, encompassing EHMT1 entirely. Clinical features included mild developmental delay, mild intellectual disability or learning problems, autism spectrum disorder, and behavior problems. The individuals did not consistently display dysmorphic features, congenital anomalies, or growth abnormalities. DNA methylation analysis revealed a weak DNAm profile for the cases with 9q34.3 duplication encompassing EHMT1, which could segregate the majority of the affected cases from controls. This study shows that individuals with 9q34.3 duplications including EHMT1 gene present with mild non-syndromic neurodevelopmental disorders and DNA methylation changes different from Kleefstra syndrome.


Asunto(s)
Deleción Cromosómica , Duplicación Cromosómica , Cromosomas Humanos Par 9 , Metilación de ADN , Cardiopatías Congénitas , N-Metiltransferasa de Histona-Lisina , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Metilación de ADN/genética , Cromosomas Humanos Par 9/genética , Masculino , Femenino , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Duplicación Cromosómica/genética , Niño , Preescolar , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Adolescente , Fenotipo
4.
Genet Med ; 25(11): 100950, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37551667

RESUMEN

PURPOSE: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. METHODS: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. RESULTS: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. CONCLUSION: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Micrognatismo , Trastornos del Neurodesarrollo , Humanos , Anomalías Múltiples/genética , Cara , Micrognatismo/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Facies , Fenotipo , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
5.
Hum Mol Genet ; 32(14): 2373-2385, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37195288

RESUMEN

PURPOSE: To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS: We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS: We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS: Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.


Asunto(s)
Segmento Inicial del Axón , Epilepsia , Células Madre Pluripotentes Inducidas , Humanos , Segmento Inicial del Axón/metabolismo , Ancirinas/genética , Ancirinas/metabolismo , Neuronas/metabolismo , Epilepsia/genética , Epilepsia/metabolismo
6.
Am J Med Genet A ; 191(7): 1900-1910, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37183572

RESUMEN

Jansen-de Vries syndrome (JdVS) is a neurodevelopmental condition attributed to pathogenic variants in Exons 5 and 6 of PPM1D. As the full phenotypic spectrum and natural history remain to be defined, we describe a large cohort of children and adults with JdVS. This is a retrospective cohort study of 37 individuals from 34 families with disease-causing variants in PPM1D leading to JdVS. Clinical data were provided by treating physicians and/or families. Of the 37 individuals, 27 were male and 10 female, with median age 8.75 years (range 8 months to 62 years). Four families document autosomal dominant transmission, and 32/34 probands were diagnosed via exome sequencing. The facial gestalt, including a broad forehead and broad mouth with a thin and tented upper lip, was most recognizable between 18 and 48 months of age. Common manifestations included global developmental delay (35/36, 97%), hypotonia (25/34, 74%), short stature (14/33, 42%), constipation (22/31, 71%), and cyclic vomiting (6/35, 17%). Distinctive personality traits include a hypersocial affect (21/31, 68%) and moderate-to-severe anxiety (18/28, 64%). In conclusion, JdVS is a clinically recognizable neurodevelopmental syndrome with a characteristic personality and distinctive facial features. The association of pathogenic variants in PPM1D with cyclic vomiting bears not only medical attention but also further pathogenic and mechanistic evaluation.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Adulto , Niño , Femenino , Humanos , Lactante , Masculino , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteína Fosfatasa 2C/genética , Estudios Retrospectivos , Vómitos , Preescolar , Adolescente , Adulto Joven , Persona de Mediana Edad
7.
HGG Adv ; 4(3): 100200, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37216008

RESUMEN

Split-hand/foot malformation (SHFM) is a congenital limb defect most typically presenting with median clefts in hands and/or feet, that can occur in a syndromic context as well as in isolated form. SHFM is caused by failure to maintain normal apical ectodermal ridge function during limb development. Although several genes and contiguous gene syndromes are implicated in the monogenic etiology of isolated SHFM, the disorder remains genetically unexplained for many families and associated genetic loci. We describe a family with isolated X-linked SHFM, for which the causative variant could be detected after a diagnostic journey of 20 years. We combined well-established approaches including microarray-based copy number variant analysis and fluorescence in situ hybridization coupled with optical genome mapping and whole genome sequencing. This strategy identified a complex structural variant (SV) comprising a 165-kb gain of 15q26.3 material ([GRCh37/hg19] chr15:99795320-99960362dup) inserted in inverted position at the site of a 38-kb deletion on Xq27.1 ([GRCh37/hg19] chrX:139481061-139518989del). In silico analysis suggested that the SV disrupts the regulatory framework on the X chromosome and may lead to SOX3 misexpression. We hypothesize that SOX3 dysregulation in the developing limb disturbed the fine balance between morphogens required for maintaining AER function, resulting in SHFM in this family.


Asunto(s)
Deformidades Congénitas de las Extremidades , Humanos , Hibridación Fluorescente in Situ , Deformidades Congénitas de las Extremidades/genética , Sitios Genéticos , Factores de Transcripción SOXB1/genética
8.
Prenat Diagn ; 43(4): 527-543, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36647814

RESUMEN

OBJECTIVE: We performed a 1-year evaluation of a novel strategy of simultaneously analyzing single nucleotide variants (SNVs), copy number variants (CNVs) and copy-number-neutral Absence-of-Heterozygosity from Whole Exome Sequencing (WES) data for prenatal diagnosis of fetuses with ultrasound (US) anomalies and a non-causative QF-PCR result. METHODS: After invasive diagnostics, whole exome parent-offspring trio-sequencing with exome-wide CNV analysis was performed in pregnancies with fetal US anomalies and a non-causative QF-PCR result (WES-CNV). On request, additional SNV-analysis, restricted to (the) requested gene panel(s) only (with the option of whole exome SNV-analysis afterward) was performed simultaneously (WES-CNV/SNV) or as rapid SNV-re-analysis, following a normal CNV analysis. RESULTS: In total, 415 prenatal samples were included. Following a non-causative QF-PCR result, WES-CNV analysis was initially requested for 74.3% of the chorionic villus (CV) samples and 45% of the amniotic fluid (AF) samples. In case WES-CNV analysis did not reveal a causative aberration, SNV-re-analysis was requested in 41.7% of the CV samples and 17.5% of the AF samples. All initial analyses could be finished within 2 weeks after sampling. For SNV-re-analysis during pregnancy, turn-around-times (TATs) varied between one and 8 days. CONCLUSION: We show a highly efficient all-in-one WES-based strategy, with short TATs, and the option of rapid SNV-re-analysis after a normal CNV result.


Asunto(s)
Variaciones en el Número de Copia de ADN , Feto , Embarazo , Femenino , Humanos , Secuenciación del Exoma , Heterocigoto , Feto/diagnóstico por imagen , Feto/anomalías , Nucleótidos
9.
Eur J Hum Genet ; 31(3): 345-352, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36564538

RESUMEN

The neuronal SNARE complex drives synaptic vesicle exocytosis. Therefore, one of its core proteins syntaxin 1A (STX1A) has long been suspected to play a role in neurodevelopmental disorders. We assembled eight individuals harboring ultra rare variants in STX1A who present with a spectrum of intellectual disability, autism and epilepsy. Causative variants comprise a homozygous splice variant, three de novo missense variants and two inframe deletions of a single amino acid. We observed a phenotype mainly driven by epilepsy in the individuals with missense variants in contrast to intellectual disability and autistic behavior in individuals with single amino acid deletions and the splicing variant. In silico modeling of missense variants and single amino acid deletions show different impaired protein-protein interactions. We hypothesize the two phenotypic courses of affected individuals to be dependent on two different pathogenic mechanisms: (1) a weakened inhibitory STX1A-STXBP1 interaction due to missense variants results in an STX1A-related developmental epileptic encephalopathy and (2) a hampered SNARE complex formation due to inframe deletions causes an STX1A-related intellectual disability and autism phenotype. Our description of a STX1A-related neurodevelopmental disorder with or without epilepsy thus expands the group of rare diseases called SNAREopathies.


Asunto(s)
Trastorno Autístico , Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Trastorno Autístico/genética , Epilepsia/genética , Discapacidad Intelectual/patología , Trastornos del Neurodesarrollo/genética , Fenotipo , Sintaxina 1/genética , Heterocigoto
10.
Circ Genom Precis Med ; 16(1): e003672, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36580316

RESUMEN

BACKGROUND: Truncating variants in desmoplakin (DSPtv) are an important cause of arrhythmogenic cardiomyopathy; however the genetic architecture and genotype-specific risk factors are incompletely understood. We evaluated phenotype, risk factors for ventricular arrhythmias, and underlying genetics of DSPtv cardiomyopathy. METHODS: Individuals with DSPtv and any cardiac phenotype, and their gene-positive family members were included from multiple international centers. Clinical data and family history information were collected. Event-free survival from ventricular arrhythmia was assessed. Variant location was compared between cases and controls, and literature review of reported DSPtv performed. RESULTS: There were 98 probands and 72 family members (mean age at diagnosis 43±8 years, 59% women) with a DSPtv, of which 146 were considered clinically affected. Ventricular arrhythmia (sudden cardiac arrest, sustained ventricular tachycardia, appropriate implantable cardioverter defibrillator therapy) occurred in 56 (33%) individuals. DSPtv location and proband status were independent risk factors for ventricular arrhythmia. Further, gene region was important with variants in cases (cohort n=98; Clinvar n=167) more likely to occur in the regions resulting in nonsense mediated decay of both major DSP isoforms, compared with n=124 genome aggregation database control variants (148 [83.6%] versus 29 [16.4%]; P<0.0001). CONCLUSIONS: In the largest series of individuals with DSPtv, we demonstrate that variant location is a novel risk factor for ventricular arrhythmia, can inform variant interpretation, and provide critical insights to allow for precision-based clinical management.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cardiomiopatías , Desmoplaquinas , Femenino , Humanos , Masculino , Arritmias Cardíacas/genética , Displasia Ventricular Derecha Arritmogénica/diagnóstico , Cardiomiopatías/genética , Desmoplaquinas/genética , Factores de Riesgo
11.
Am J Med Genet A ; 191(1): 135-143, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36271811

RESUMEN

We describe the phenotype of 22 male patients (20 probands) carrying a hemizygous missense variant in MED12. The phenotypic spectrum is very broad ranging from nonspecific intellectual disability (ID) to the three well-known syndromes: Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, or Ohdo syndrome. The identified variants were randomly distributed throughout the gene (p = 0.993, χ2 test), but mostly outside the functional domains (p = 0.004; χ2 test). Statistical analyses did not show a correlation between the MED12-related phenotypes and the locations of the variants (p = 0.295; Pearson correlation), nor the protein domain involved (p = 0.422; Pearson correlation). In conclusion, establishing a genotype-phenotype correlation in MED12-related diseases remains challenging. Therefore, we think that patients with a causative MED12 variant are currently underdiagnosed due to the broad patients' clinical presentations.


Asunto(s)
Blefarofimosis , Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Masculino , Humanos , Complejo Mediador/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Blefarofimosis/genética , Mutación Missense/genética , Fenotipo , Síndrome
12.
Circ Genom Precis Med ; 15(5): e002981, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36178741

RESUMEN

BACKGROUND: This study aimed to describe the current practice and results of genetic evaluation in Dutch children with dilated cardiomyopathy and to evaluate genotype-phenotype correlations that may guide prognosis. METHODS: We performed a multicenter observational study in children diagnosed with dilated cardiomyopathy, from 2010 to 2017. RESULTS: One hundred forty-four children were included. Initial diagnostic categories were idiopathic dilated cardiomyopathy in 67 children (47%), myocarditis in 23 (16%), neuromuscular in 7 (5%), familial in 18 (13%), inborn error of metabolism in 4 (3%), malformation syndrome in 2 (1%), and "other" in 23 (16%). Median follow-up time was 2.1 years [IQR 1.0-4.3]. Hundred-seven patients (74%) underwent genetic testing. We found a likely pathogenic or pathogenic variant in 38 children (36%), most often in MYH7 (n = 8). In 1 patient initially diagnosed with myocarditis, a pathogenic LMNA variant was found. During the study, 39 patients (27%) reached study endpoint (SE: all-cause death or heart transplantation). Patients with a likely pathogenic or pathogenic variant were more likely to reach SE compared with those without (hazard ratio 2.8; 95% CI 1.3-5.8, P = 0.007), while transplant-free survival was significantly lower (P = 0.006). Clinical characteristics at diagnosis did not differ between the 2 groups. CONCLUSIONS: Genetic testing is a valuable tool for predicting prognosis in children with dilated cardiomyopathy, with carriers of a likely pathogenic or pathogenic variant having a worse prognosis overall. Genetic testing should be incorporated in clinical work-up of all children with dilated cardiomyopathy regardless of presumed disease pathogenesis.


Asunto(s)
Cardiomiopatía Dilatada , Miocarditis , Humanos , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Miocarditis/genética , Pruebas Genéticas , Estudios de Asociación Genética , Medición de Riesgo
13.
Hum Mutat ; 43(10): 1377-1395, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35730652

RESUMEN

Mitogen-activated protein 3 kinase 7 (MAP3K7) encodes the ubiquitously expressed transforming growth factor ß-activated kinase 1, which plays a crucial role in many cellular processes. Mutationsin the MAP3K7 gene have been linked to two distinct disorders: frontometaphyseal dysplasia type 2 (FMD2) and cardiospondylocarpofacial syndrome (CSCF). The fact that different mutations can induce two distinct phenotypes suggests a phenotype/genotype correlation, but no side-by-side comparison has been done thus far to confirm this. Here, we significantly expand the cohort and the description of clinical phenotypes for patients with CSCF and FMD2 who carry mutations in MAP3K7. Our findings support that in contrast to FMD2-causing mutations, CSCF-causing mutations in MAP3K7 have a loss-of-function effect. Additionally, patients with pathogenic mutations in MAP3K7 are at risk for (severe) cardiac disease, have symptoms associated with connective tissue disease, and we show overlap in clinical phenotypes of CSCF with Noonan syndrome (NS). Together, we confirm a molecular fingerprint of FMD2- versus CSCF-causing MAP3K7 mutations and conclude that mutations in MAP3K7 should be considered in the differential diagnosis of patients with syndromic congenital cardiac defects and/or cardiomyopathy, syndromic connective tissue disorders, and in the differential diagnosis of NS.


Asunto(s)
Anomalías Múltiples , Síndrome de Noonan , Anomalías Múltiples/genética , Genotipo , Pérdida Auditiva Bilateral , Humanos , Insuficiencia de la Válvula Mitral , Mutación , Síndrome de Noonan/genética , Osteosclerosis , Fenotipo
14.
Brain ; 145(1): 208-223, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-34382076

RESUMEN

Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy and movement disorder. We evaluated a large cohort of patients (n = 25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor and ataxia. Later in the disease course, they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibres and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.


Asunto(s)
Transferasas Alquil y Aril , Mioclonía , Enfermedades Neurodegenerativas , Retinitis Pigmentosa , Niño , Dolicoles/metabolismo , Humanos , Enfermedades Neurodegenerativas/genética , Retinitis Pigmentosa/genética
15.
Eur J Pediatr Surg ; 31(6): 482-491, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34911130

RESUMEN

Anorectal malformation (ARM) is a relatively frequently occurring congenital anomaly of hindgut development with a prevalence of 1 in 3,000 live births. ARM may present as an isolated anomaly, but it can also be associated with other anomalies, sometimes as part of a recognizable syndrome. After birth, much medical attention is given to the treatment and restoring of bowel function in children with ARM. Effort should also be given to studying the etiology of the ARM in these patients. This information is important to both the medical community and the family, because it can help guide treatment and provides information on the long-term prognosis of the patient and recurrence risk in the family.In this article, we will review the current knowledge on the (genetic) etiology of (syndromic) ARM and provide guidelines for (family) history taking and clinical and genetic studies of ARM patients and their families, which is needed to study the causal factors in an ARM patient and for genetic counseling of the families.


Asunto(s)
Malformaciones Anorrectales , Niño , Asesoramiento Genético , Humanos , Prevalencia
16.
Am J Med Genet A ; 185(7): 2204-2210, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33938610

RESUMEN

The CEP83 protein is an essential part in the first steps of ciliogenesis, causing a ciliopathy if deficient. As a core component of the distal appendages of the centriole, CEP83 is located in almost all cell types and is involved in the primary cilium assembly. Previously reported CEP83 deficient patients all presented with nephronophthisis and kidney dysfunction. Despite retinal degeneration being a common feature in ciliopathies, only one patient also had retinitis. Here, we present two unrelated patients, who both presented with retinitis pigmentosa, without nephronophthisis or any form of kidney dysfunction. Both patients harbor bi-allelic variants in CEP83. This report expands the current clinical spectrum of CEP83 deficiency. For timely diagnosis of CEP83 deficiency, we advocate that CEP83 should be included in gene panels for inherited retinal diseases.


Asunto(s)
Ciliopatías/genética , Proteínas Asociadas a Microtúbulos/genética , Retina/patología , Retinitis Pigmentosa/genética , Niño , Preescolar , Cilios , Ciliopatías/diagnóstico por imagen , Ciliopatías/patología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Riñón/diagnóstico por imagen , Enfermedades Renales/diagnóstico por imagen , Enfermedades Renales/genética , Enfermedades Renales/patología , Masculino , Proteínas Asociadas a Microtúbulos/deficiencia , Retina/diagnóstico por imagen , Retinitis Pigmentosa/diagnóstico por imagen , Retinitis Pigmentosa/patología
17.
Brain ; 144(2): 584-600, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33559681

RESUMEN

The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Neuropatía Hereditaria Motora y Sensorial/genética , Adulto , Anciano , Animales , Conducta Animal/fisiología , Niño , Femenino , Neuropatía Hereditaria Motora y Sensorial/patología , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Mutación , Linaje , Adulto Joven , Pez Cebra
18.
Birth Defects Res ; 112(18): 1495-1504, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33179873

RESUMEN

BACKGROUND: The VACTERL association (VACTERL) includes at least three of these congenital anomalies: vertebral, anal, cardiac, trachea-esophageal, renal, and limb anomalies. Assisted reproductive techniques (ART), pregestational diabetes mellitus, and chronic lower obstructive pulmonary disorders (CLOPD) have been associated with VACTERL. We aimed to replicate these findings and were interested in additional maternal risk factors. METHODS: A case-control study using self-administered questionnaires was performed including 142 VACTERL cases and 2,135 population-based healthy controls. Multivariable logistic regression analyses were performed to estimate confounder adjusted odds ratios (aOR) and 95% confidence intervals (95%CI). RESULTS: Parents who used invasive ART had an increased risk of VACTERL in offspring (aOR 4.4 [95%CI 2.1-8.8]), whereas the increased risk for mothers with CLOPD could not be replicated. None of the case mothers had pregestational diabetes mellitus. Primiparity (1.5 [1.1-2.1]) and maternal pregestational overweight and obesity (1.8 [1.2-2.8] and 1.8 [1.0-3.4]) were associated with VACTERL. Consistent folic acid supplement use during the advised periconceptional period may reduce the risk of VACTERL (0.5 [0.3-1.0]). Maternal smoking resulted in an almost twofold increased risk of VACTERL. CONCLUSION: We identified invasive ART, primiparity, pregestational overweight and obesity, lack of folic acid supplement use, and smoking as risk factors for VACTERL.


Asunto(s)
Deformidades Congénitas de las Extremidades , Tráquea , Canal Anal/anomalías , Estudios de Casos y Controles , Esófago/anomalías , Femenino , Cardiopatías Congénitas , Humanos , Riñón/anomalías , Deformidades Congénitas de las Extremidades/epidemiología , Deformidades Congénitas de las Extremidades/etiología , Columna Vertebral/anomalías , Tráquea/anomalías
19.
Front Cell Dev Biol ; 8: 567, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850778

RESUMEN

Previous studies in developing Xenopus and zebrafish reported that the phosphate transporter slc20a1a is expressed in pronephric kidneys. The recent identification of SLC20A1 as a monoallelic candidate gene for cloacal exstrophy further suggests its involvement in the urinary tract and urorectal development. However, little is known of the functional role of SLC20A1 in urinary tract development. Here, we investigated this using morpholino oligonucleotide knockdown of the zebrafish ortholog slc20a1a. This caused kidney cysts and malformations of the cloaca. Moreover, in morphants we demonstrated dysfunctional voiding and hindgut opening defects mimicking imperforate anus in human cloacal exstrophy. Furthermore, we performed immunohistochemistry of an unaffected 6-week-old human embryo and detected SLC20A1 in the urinary tract and the abdominal midline, structures implicated in the pathogenesis of cloacal exstrophy. Additionally, we resequenced SLC20A1 in 690 individuals with bladder exstrophy-epispadias complex (BEEC) including 84 individuals with cloacal exstrophy. We identified two additional monoallelic de novo variants. One was identified in a case-parent trio with classic bladder exstrophy, and one additional novel de novo variant was detected in an affected mother who transmitted this variant to her affected son. To study the potential cellular impact of SLC20A1 variants, we expressed them in HEK293 cells. Here, phosphate transport was not compromised, suggesting that it is not a disease mechanism. However, there was a tendency for lower levels of cleaved caspase-3, perhaps implicating apoptosis pathways in the disease. Our results suggest SLC20A1 is involved in urinary tract and urorectal development and implicate SLC20A1 as a disease-gene for BEEC.

20.
Front Pediatr ; 8: 310, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32656166

RESUMEN

Background: The VATER/VACTERL association (VACTERL) is defined as the non-random occurrence of the following congenital anomalies: Vertebral, Anal, Cardiac, Tracheal-Esophageal, Renal, and Limb anomalies. As no unequivocal candidate gene has been identified yet, patients are diagnosed phenotypically. The aims of this study were to identify patients with monogenic disorders using a genetics-first approach, and to study whether variants in candidate genes are involved in the etiology of VACTERL or the individual features of VACTERL: Anorectal malformation (ARM) or esophageal atresia with or without trachea-esophageal fistula (EA/TEF). Methods: Using molecular inversion probes, a candidate gene panel of 56 genes was sequenced in three patient groups: VACTERL (n = 211), ARM (n = 204), and EA/TEF (n = 95). Loss-of-function (LoF) and additional likely pathogenic missense variants, were prioritized and validated using Sanger sequencing. Validated variants were tested for segregation and patients were clinically re-evaluated. Results: In 7 out of the 510 patients (1.4%), pathogenic or likely pathogenic variants were identified in SALL1, SALL4, and MID1, genes that are associated with Townes-Brocks, Duane-radial-ray, and Opitz-G/BBB syndrome. These syndromes always include ARM or EA/TEF, in combination with at least two other VACTERL features. We did not identify LoF variants in the remaining candidate genes. Conclusions: None of the other candidate genes were identified as novel unequivocal disease genes for VACTERL. However, a genetics-first approach allowed refinement of the clinical diagnosis in seven patients, in whom an alternative molecular-based diagnosis was found with important implications for the counseling of the families.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA