Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 13: 1241056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746268

RESUMEN

Introduction: Abl family kinases function as proto-oncogenes in various leukemias, and pro-tumor functions have been discovered for Abl kinases in many solid tumors as well. However, a growing body of evidence indicates that Abl kinases can function to suppress tumor cell proliferation and motility and tumor growth in vivo in some settings. Methods: To investigate the role of Abl kinases in tumor progression, we used RNAi to generate Abl-deficient cells in a model of androgen receptor-indifferent, metastatic prostate cancer. The effect of Abl kinase depletion on tumor progression and metastasis was studied in an in vivo orthotopic model, and tumor cell motility, 3D growth, and signaling was studied in vitro. Results: Reduced Abl family kinase expression resulted in a highly aggressive, metastatic phenotype in vivo that was associated with AKT pathway activation, increased growth on 3D collagen matrix, and enhanced cell motility in vitro. Inhibiting AKT pathway signaling abolished the increased 3D growth of Abl-deficient cells, while treatment with the Abl kinase inhibitor, imatinib, promoted 3D growth of multiple additional tumor cell types. Moreover, Abl kinase inhibition also promoted soft-agar colony formation by pre-malignant fibroblasts. Conclusions: Collectively, our data reveal that Abl family kinases can function to suppress malignant cell phenotypes in vitro, and tumor progression and metastasis in vivo.

2.
Development ; 143(5): 864-71, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26811381

RESUMEN

Vertebrate Bicaudal-C (Bicc1) has important biological roles in the formation and homeostasis of multiple organs, but direct experiments to address the role of maternal Bicc1 in early vertebrate embryogenesis have not been reported. Here, we use antisense phosphorothioate-modified oligonucleotides and the host-transfer technique to eliminate specifically maternal stores of both bicc1 mRNA and Bicc1 protein from Xenopus laevis eggs. Fertilization of these Bicc1-depleted eggs produced embryos with an excess of dorsal-anterior structures and overexpressed organizer-specific genes, indicating that maternal Bicc1 is crucial for normal embryonic patterning of the vertebrate embryo. Bicc1 is an RNA-binding protein with robust translational repression function. Here, we show that the maternal mRNA encoding the cell-fate regulatory protein Wnt11b is a direct target of Bicc1-mediated repression. It is well established that the Wnt signaling pathway is crucial to vertebrate embryogenesis. Thus, the work presented here links the molecular function of Bicc1 in mRNA target-specific translation repression to its biological role in the maternally controlled stages of vertebrate embryogenesis.


Asunto(s)
Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Desarrollo Embrionario , Femenino , MicroARNs/metabolismo , Mutación , Oligonucleótidos Antisentido/genética , Oocitos/metabolismo , Fenotipo , ARN Mensajero/metabolismo , ARN Mensajero Almacenado/genética , Transducción de Señal , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...