Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Panminerva Med ; 64(1): 17-23, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35330556

RESUMEN

BACKGROUND: Despite mounting evidence, there is uncertainty on the impact of the interplay between weather and pollution features on the risk of acute cerebrovascular events (CVE). We aimed at appraising role of weather and pollution on the daily risk of CVE. METHODS: Anonymized data from a hub CVE center in a large metropolitan area were collected and analyzed according to weather (temperature, pressure, humidity, and rainfall) and pollution (carbon monoxide [CO], nitrogen dioxide [NO2], nitrogen oxides [NOX], ozone [O3], and particulate matter [PM]) on the same and the preceding days. Poisson regression and time series analyses were used to appraise the association between environmental features and daily CVE, distinguishing also several subtypes of events. RESULTS: We included a total of 2534 days, with 1363 days having ≥1 CVE, from 2012 to 2017. Average daily rate was 1.56 (95% confidence interval: 1.49; 1.63) for CVE, with other event rates ranging between 1.42 for stroke and 0.01 for ruptured intracranial aneurysm. Significant associations were found between CVE and temperature, pressure, CO, NO2, NOX, O3, and PM <10 µm (all P<0.05), whereas less stringent associations were found for humidity, rainfall, and PM <2.5 µm. Time series analysis exploring lag suggested that associations were stronger at same-day analysis (lag 0), but even environmental features predating several days or weeks were significantly associated with events. Multivariable analysis suggested that CO (point estimate 1.362 [1.011; 1.836], P=0.042) and NO2 (1.011 [1.005; 1.016], P<0.001) were the strongest independent predictors of CVE. CONCLUSIONS: Environmental features are significantly associated with CVE, even several days before the actual event. Levels of CO and NO2 can be potentially leveraged for population-level interventions to reduce the burden of CVE.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Humanos , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Tiempo (Meteorología)
2.
Minerva Med ; 113(5): 825-832, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35156790

RESUMEN

BACKGROUND: Despite mounting evidence, the impact of the interplay between weather and pollution features on the risk of acute cardiac and cerebrovascular events has not been entirely appraised. The aim of this study was to perform a comprehensive cluster analysis of weather and pollution features in a large metropolitan area, and their association with acute cardiac and cerebrovascular events. METHODS: Anonymized data on acute myocardial infarction (AMI) and acute cerebrovascular events were obtained from 3 tertiary care centers from a single large metropolitan area. Weather and pollution data were obtained averaging measurements from several city measurement stations managed by the competent regional agency for enviromental protection, and from the Metereological Center of Italian Military Aviation. Unsupervised machine learning was performed with hierarchical clustering to identify specific days with distinct weather and pollution features. Clusters were then compared for rates of acute cardiac and cerebrovascular events with Poisson models. RESULTS: As expected, significant pairwise correlations were found between weather and pollution features. Building upon these correlations, hierarchical clustering, from a total of 1169 days, generated 4 separate clusters: mostly winter days with low temperatures and high ozone concentrations (cluster 1, N.=60, 5.1%), days with moderately high temperatures and low pollutants concentrations (cluster 2, N.=419, 35.8%), mostly summer and spring days with high temperatures and high ozone concentrations (cluster 3, N.=673, 57.6%), and mostly winter days with low temperatures and low ozone concentrations (cluster 4, N.=17, 1.5%). Overall cluster-wise comparisons showed significant differences in adverse cardiac and cerebrovascular events (P<0.001), as well as in cerebrovascular events (P<0.001) and strokes (P=0.001). Between-cluster comparisons showed that cluster 1 was associated with an increased risk of any event, cerebrovascular events, and strokes in comparison to cluster 2, cluster 3 and cluster 4 (all P<0.05), as well as AMI in comparison to cluster 3 (P=0.047). In addition, cluster 2 was associated with a higher risk of strokes in comparison to cluster 4 (P=0.030). Analysis adjusting for season confirmed the increased risk of any event, cerebrovascular events and strokes for cluster 1 and cluster 2. CONCLUSIONS: Unsupervised machine learning can be leveraged to identify specific days with a unique clustering of adverse weather and pollution features which are associated with an increased risk of acute cardiovascular events, especially cerebrovascular events. These findings may improve collective and individual risk prediction and prevention.


Asunto(s)
Trastornos Cerebrovasculares , Tiempo (Meteorología) , Humanos , Análisis por Conglomerados
3.
Environ Pollut ; 291: 118191, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34547660

RESUMEN

Between 9 March and 18 May 2020, strict lockdown measures were adopted in Italy for containing the COVID-19 pandemic: in Rome, despite vehicular traffic on average was more than halved, it was not observed a evident decrease of the airborne particulate matter (PM) concentrations, as assessed by air quality data. In this study, daily PM10 filters were collected from selected automated stations operated in Rome by the regional network of air quality monitoring: their magnetic properties - including magnetic susceptibility, hysteresis parameters and FORC (first order reversal curves) diagrams - were compared during and after the lockdown, for outlining the impact of the COVID-19 measures on airborne particulate matter. In urban traffic sites, the PM10 concentrations did not significantly change after the end of the lockdown, when vehicular traffic promptly returned to its usual levels; conversely, the average volume and mass magnetic susceptibilities approximately doubled, and the linear correlation between volume magnetic susceptibility and PM10 concentration became significant, pointing out the link between PM10 concentrations and the increasing levels of traffic-related magnetic emissions. Magnetite-like minerals, attributed to non-exhaust brakes emissions, dominated the magnetic fraction of PM10 near urban traffic sites, with natural magnetic components emerging in background sites and during exogenous dusts atmospheric events. Magnetic susceptibility constituted a fast and sensitive proxy of vehicular particulate emissions: the magnetic properties can play a relevant role in the source apportionment of PM10, especially when unsignificant variations in its concentration levels may mask important changes in the traffic-related magnetic fraction. As a further hint, increasing attention should be drawn to the reduction of brake wear emissions, that are overcoming by far fuel exhausts as the main particulate pollutant in traffic contexts.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Italia , Fenómenos Magnéticos , Pandemias , Material Particulado/análisis , Ciudad de Roma , SARS-CoV-2 , Emisiones de Vehículos/análisis
4.
Int J Cardiol ; 329: 251-259, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33387558

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) has caused an unprecedented change in the apparent epidemiology of acute coronary syndromes (ACS). However, the interplay between this disease, changes in pollution, climate, and aversion to activation of emergency medical services represents a challenging conundrum. We aimed at appraising the impact of COVID-19, weather, and environment features on the occurrence of ST-elevation myocardial infarction (STEMI) and non-ST-elevation myocardial infarction (NSTEMI) in a large Italian region and metropolitan area. METHODS AND RESULTS: Italy was hit early on by COVID-19, such that state of emergency was declared on January 31, 2020, and national lockdown implemented on March 9, 2020, mainly because the accrual of cases in Northern Italy. In order to appraise the independent contribution on changes in STEMI and NSTEMI daily rates of COVID-19, climate and pollution, we collected data on these clinical events from tertiary care cardiovascular centers in the Lazio region and Rome metropolitan area. Multilevel Poisson modeling was used to appraise unadjusted and adjusted effect estimates for the daily incidence of STEMI and NSTEMI cases. The sample included 1448 STEMI and 2040 NSTEMI, with a total of 2882 PCI spanning 6 months. Significant reductions in STEMI and NSTEMI were evident already in early February 2020 (all p<0.05), concomitantly with COVID-19 spread and institution of national countermeasures. Changes in STEMI and NSTEMI were inversely associated with daily COVID-19 tests, cases, and/or death (p<0.05). In addition, STEMI and NSTEMI incidences were associated with daily NO2, PM10, and O3 concentrations, as well as temperature (p<0.05). Multi-stage and multiply adjusted models highlighted that reductions in STEMI were significantly associated with COVID-19 data (p<0.001), whereas changes in NSTEMI were significantly associated with both NO2 and COVID-19 data (both p<0.001). CONCLUSIONS: Reductions in STEMI and NSTEMI in the COVID-19 pandemic may depend on different concomitant epidemiologic and pathophysiologic mechanisms. In particular, recent changes in STEMI may depend on COVID-19 scare, leading to excess all-cause mortality, or effective reduced incidence, whereas reductions in NSTEMI may also be due to beneficial reductions in NO2 emissions in the lockdown phase.


Asunto(s)
Síndrome Coronario Agudo/epidemiología , COVID-19/epidemiología , Contaminación Ambiental/efectos adversos , Pandemias , SARS-CoV-2 , Tiempo (Meteorología) , Anciano , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Italia/epidemiología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo
5.
Panminerva Med ; 62(4): 252-259, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33021366

RESUMEN

BACKGROUND: Strong epidemiologic evidence has highlighted the role of pollution, on top of adverse climate features, as a novel cardiovascular risk factor. However, mechanistic proof that reducing pollution may be beneficial to prevent atherothrombotic events is limited. We aimed at appraising the impact of temporary traffic bans in a large metropolitan area on the risk of acute coronary syndromes. METHODS: Aggregate and anonymized data from 15 tertiary cardiac care centers were obtained detailing precoronavirus disease 2019 (COVID-19) daily cases of ST-elevation myocardial infarction (STEMI) and non-ST-elevation myocardial infarction (NSTEMI), including those treated with percutaneous coronary intervention (PCI). Data on pollutants and climate were sought for the same days. Mixed level regression was used to compare the week before vs after the traffic ban (Fortnight analysis), the 3 days before vs. after (Weekly analysis) and the Sunday before vs. after (Sunday analysis). RESULTS: A total of 8 days of temporary traffic bans were included, occurring between 2017 and 2020, totaling 802 STEMI and 1196 NSTEMI in the Fortnight analysis, 382 STEMI and 585 in the Weekly analysis, and 148 STEMI and 210 NSTEMI in the Sunday analysis.Fortnight and Sunday analyses did not disclose a significant impact of traffic ban on STEMI or NSTEMI (all P>0.05). Conversely, Weekly analysis showed non-significant changes for STEMI, but a significant decrease in daily NSTEMI when comparing the 3 days before the traffic ban with the ban day (P=0.043), as well as the 3 days before vs. the 3 days after the ban (P=0.025). No statistically significant effect of traffic ban was found at Fortnight, Weekly or Sunday analyses for daily mean concentrations of benzene, carbon monoxide, nitric oxide, nitrogen dioxide, ozone, sulfur dioxide, particulate matter (PM) <2.5 µm or PM <10 µm (all P>0.05). However, minimum daily concentrations showed a significant reduction of ozone during the ban in comparison to the week preceding it (P=0.034), nitric oxide during the ban in comparison to the 3 days preceding it (P=0.046), and an increase in benzene during the ban in comparison to the Sunday before (P=0.039). CONCLUSIONS: Temporary traffic ban may favorably reduce coronary atherothrombotic events, and in particular NSTEMI, even if not globally and immediately impacting on environmental pollution. Further controlled studies are required to confirm and expand this hypothesis-generating results.


Asunto(s)
Síndrome Coronario Agudo/epidemiología , Vehículos a Motor , Anciano , COVID-19/epidemiología , COVID-19/virología , Femenino , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación
6.
Eur Heart J Suppl ; 22(Suppl N): N81-N82, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38626246

RESUMEN

Aims: Strong epidemiologic evidence has highlighted the role of pollution, on top of adverse climate features, as a novel cardiovascular risk factor. However, mechanistic proof that reducing pollution may be beneficial to prevent atherothrombotic events is limited. We aimed at appraising the impact of temporary traffic bans in a large metropolitan area on the risk of acute coronary syndromes. Methods and results: Aggregate and anonymized data from 15 tertiary cardiac care centers were obtained detailing pre-coronarivus disease 2019 (COVID-19) daily cases of ST-elevation myocardial infarction (STEMI) and non-ST-elevation myocardial infarction (NSTEMI), including those treated with percutaneous coronary intervention (PCI). Data on pollutants and climate were sought for the same days. Mixed level regression was used to compare the week before vs. after the traffic ban (Fortnight analysis), the 3 days before vs. after (Weekly analysis) and the Sunday before vs. after (Sunday analysis). A total of 8 days of temporary traffic bans were included, occurring between 2017 and 2020, totaling 802 STEMI and 1196 NSTEMI in the Fortnight analysis, 382 STEMI and 585 in the Weekly analysis, and 148 STEMI and 210 NSTEMI in the Sunday analysis. Fortnight and Sunday analysis did not disclose a significant impact of traffic ban on STEMI or NSTEMI (all P > 0.05). Conversely, Weekly analysis showed non-significant changes for STEMI but a significant decrease in daily NSTEMI when comparing the 3 days before the traffic ban with the ban day (P = 0.043), as well as the 3 days before vs. the 3 days after the ban (P = 0.025). No statistically significant effect of traffic ban was found at Fortnight, Weekly or Sunday analyses for daily mean concentrations of benzene, carbon monoxide, nitric oxide, nitrogen dioxide, ozone, sulfur dioxide, particulate matter (PM) <2.5 µm or PM < 10 µm (all P > 0.05). However, minimum daily concentrations showed a significant reduction of ozone during the ban in comparison to the week preceding it (P = 0.034), nitric oxide during the ban in comparison to the 3 days preceding it (P = 0.046), and an increase in benzene during the ban in comparison to the Sunday before (P = 0.039). Conclusion: Temporary traffic bans may favorably reduce coronary atherothrombotic events, and in particular NSTEMI, even if not globally and immediately impacting on environmental pollution. Further controlled studies are required to confirm and expand this hypothesis-generating results.

7.
Eur Heart J Suppl ; 22(Suppl N): N17-N18, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38626269

RESUMEN

Aims: Coronavirus disease 2019 (COVID-19) has caused an unprecedented change in the apparent epidemiology of acute coronary syndromes (ACS). However, the interplay between this disease, changes in pollution, climate, and aversion to activation of emergency medical services represents a challenging conundrum. We aimed at appraising the impact of COVID-19, weather, and environment features on the occurrence of ST-elevation myocardial infarction (STEMI) and non-ST-elevation myocardial infarction (NSTEMI) in a large Italian region and metropolitan area. Methods and results: Italy was hit early on by COVID-19, such that state of emergency was declared on January 31, 2020, and national lockdown implemented on March 9, 2020, mainly because the accrual of cases in Northern Italy. In order to appraise the independent contribution on changes in STEMI and NSTEMI daily rates of COVID-19, climate and pollution, we collected data on these clinical events from tertiary care cardiovascular centers in the Lazio region and Rome metropolitan area. Multilevel Poisson modeling was used to appraise unadjusted and adjusted effect estimates for the daily incidence of STEMI and NSTEMI. The sample included 1448 STEMI and 2040 NSTEMI, with a total of 2882 PCI spanning 6 months. Significant reductions in STEMI and NSTEMI were evident already in early February 2020 (all P < 0.05), concomitantly with COVID-19 spread and institution of national countermeasures. Changes in STEMI and NSTEMI were inversely associated with daily COVID-19 tests, cases, and/or death (P < 0.05). In addition, STEMI and NSTEMI incidences were associated with daily NO2, PM10, and O3 concentrations, as well as temperature (P < 0.05). Multi-stage and multiply adjusted models highlighted that reductions in STEMI were significantly associated with COVID-19 data (P < 0.001), whereas changes in NSTEMI were significantly associated with both NO2 and COVID-19 data (both P < 0.001). Conclusion: Reductions in STEMI and NSTEMI in the COVID-19 pandemic may depend on different concomitant epidemiologic and pathophysiologic mechanisms. In particular, recent changes in STEMI may depend on COVID-19 scare, leading to excess all-cause mortality, or effective reduced incidence, whereas reductions in NSTEMI may also be due to beneficial reductions in NO2 emissions in the lockdown phase.

8.
Langmuir ; 26(19): 15561-6, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20822171

RESUMEN

One-phase, one-pot synthesis of Ag(0) nanoparticles capped with alkanethiolate molecules has been optimized to easily achieve a pure product in quantitative yield. We report the synthesis of dodecanethiolate-capped silver particles and the chemophysical, structural, and morphologic characterization performed by way of UV-vis, (1)H NMR, and X-ray photoelectron (XPS) spectroscopies, X-ray powder diffraction (XRD) and X-ray absorption fine structure analysis (XFAS), electron diffraction and high-resolution transmission electron microscopy (HR-TEM), and scanning and transmission electron microscopy (SEM and TEM). Depending on the molar ratio of the reagents (dodecylthiosulphate/Ag(+)), the mean Ag(0) particle size D(XRD) is tuned from 4 to 3 nm with a narrow size distribution. The particles are highly soluble, very stable in organic solvents (hexane, toluene, dichloromethane, etc.), and resistant to oxidation; the hexane solution after one year at room temperature does not show any precipitation or formation of oxidation byproducts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA