Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Psychiatry Res ; 337: 115951, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38735240

RESUMEN

Isolation of rodents throughout adolescence is known to induce many behavioral abnormalities which resemble neuropsychiatric disorders. Separately, this paradigm has also been shown to induce long-term metabolic changes consistent with a pre-diabetic state. Here, we investigate changes in central serotonin (5-HT) and glucagon-like peptide 1 (GLP-1) neurobiology that dually accompany behavioral and metabolic outcomes following social isolation stress throughout adolescence. We find that adolescent-isolation mice exhibit elevated blood glucose levels, impaired peripheral insulin signaling, altered pancreatic function, and fattier body composition without changes in bodyweight. These mice further exhibited disruptions in sleep and enhanced nociception. Using bulk and spatial transcriptomic techniques, we observe broad changes in neural 5-HT, GLP-1, and appetitive circuits. We find 5-HT neurons of adolescent-isolation mice to be more excitable, transcribe fewer copies of Glp1r (mRNA; GLP-1 receptor), and demonstrate resistance to the inhibitory effects of the GLP-1R agonist semaglutide on action potential thresholds. Surprisingly, we find that administration of semaglutide, commonly prescribed to treat metabolic syndrome, induced deficits in social interaction in group-housed mice and rescued social deficits in isolated mice. Overall, we find that central 5-HT circuitry may simultaneously influence mental well-being and metabolic health in this model, via interactions with GLP-1 and proopiomelanocortin circuitry.

2.
Pharmacol Res ; 203: 107171, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599469

RESUMEN

The impact of Alzheimer's disease (AD) and its related dementias is rapidly expanding, and its mitigation remains an urgent social and technical challenge. To date there are no effective treatments or interventions for AD, but recent studies suggest that alcohol consumption is correlated with the risk of developing dementia. In this review, we synthesize data from preclinical, clinical, and epidemiological models to evaluate the combined role of alcohol consumption and serotonergic dysfunction in AD, underscoring the need for further research on this topic. We first discuss the limitations inherent to current data-collection methods, and how neuropsychiatric symptoms common among AD, alcohol use disorder, and serotonergic dysfunction may mask their co-occurrence. We additionally describe how excess alcohol consumption may accelerate the development of AD via direct effects on serotonergic function, and we explore the roles of neuroinflammation and proteostasis in mediating the relationship between serotonin, alcohol consumption, and AD. Lastly, we argue for a shift in current research to disentangle the pathogenic effects of alcohol on early-affected brainstem structures in AD.


Asunto(s)
Consumo de Bebidas Alcohólicas , Enfermedad de Alzheimer , Serotonina , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/etiología , Serotonina/metabolismo , Consumo de Bebidas Alcohólicas/efectos adversos , Animales , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Alcoholismo/metabolismo
3.
bioRxiv ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37609170

RESUMEN

Schizophrenia is marked by poor social functioning that can have a severe impact on quality of life and independence, but the underlying neural circuity is not well understood. Here we used a translational model of subanesthetic ketamine in mice to delineate neural pathways in the brain linked to social deficits in schizophrenia. Mice treated with chronic ketamine (30 mg/kg/day for 10 days) exhibit profound social and sensorimotor deficits as previously reported. Using three- dimensional c-Fos immunolabeling and volume imaging (iDISCO), we show that ketamine treatment resulted in hypoactivation of the lateral septum (LS) in response to social stimuli. Chemogenetic activation of the LS rescued social deficits after ketamine treatment, while chemogenetic inhibition of previously active populations in the LS (i.e. social engram neurons) recapitulated social deficits in ketamine-naïve mice. We then examined the translatome of LS social engram neurons and found that ketamine treatment dysregulated genes implicated in neuronal excitability and apoptosis, which may contribute to LS hypoactivation. We also identified 38 differentially expressed genes (DEGs) in common with human schizophrenia, including those involved in mitochondrial function, apoptosis, and neuroinflammatory pathways. Chemogenetic activation of LS social engram neurons induced downstream activity in the ventral part of the basolateral amygdala, subparafascicular nucleus of the thalamus, intercalated amygdalar nucleus, olfactory areas, and dentate gyrus, and it also reduces connectivity of the LS with the piriform cortex and caudate-putamen. In sum, schizophrenia-like social deficits may emerge via changes in the intrinsic excitability of a discrete subpopulation of LS neurons that serve as a central hub to coordinate social behavior via downstream projections to reward, fear extinction, motor and sensory processing regions of the brain.

4.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398179

RESUMEN

In 2020, stay-at-home orders were implemented to stem the spread of SARS-CoV-2 worldwide. Social isolation can be particularly harmful to children and adolescents-during the pandemic, the prevalence of obesity increased by ∼37% in persons aged 2-19. Obesity is often comorbid with type 2 diabetes, which was not assessed in this human pandemic cohort. Here, we investigated whether male mice isolated throughout adolescence develop type 2 diabetes in a manner consistent with human obesity-induced diabetes, and explored neural changes that may underlie such an interaction. We find that isolating C57BL/6J mice throughout adolescence is sufficient to induce type 2 diabetes. We observed fasted hyperglycemia, diminished glucose clearance in response to an insulin tolerance test, decreased insulin signaling in skeletal muscle, decreased insulin staining of pancreatic islets, increased nociception, and diminished plasma cortisol levels compared to group-housed control mice. Using Promethion metabolic phenotyping chambers, we observed dysregulation of sleep and eating behaviors, as well as a time-dependent shift in respiratory exchange ratio of the adolescent-isolation mice. We profiled changes in neural gene transcription from several brain areas and found that a neural circuit between serotonin-producing and GLP-1-producing neurons is affected by this isolation paradigm. Overall, spatial transcription data suggest decreased serotonin neuron activity (via decreased GLP-1-mediated excitation) and increased GLP-1 neuron activity (via decreased serotonin-mediated inhibition). This circuit may represent an intersectional target to further investigate the relationship between social isolation and type 2 diabetes, as well as a pharmacologically-relevant circuit to explore the effects of serotonin and GLP-1 receptor agonists. Article Highlights: Isolating C57BL/6J mice throughout adolescence is sufficient to induce type 2 diabetes, presenting with fasted hyperglycemia.Adolescent-isolation mice have deficits in insulin responsiveness, impaired peripheral insulin signaling, and decreased pancreatic insulin production.Transcriptional changes across the brain include the endocannabinoid, serotonin, and GLP-1 neurotransmitters and associated receptors. The neural serotonin/GLP-1 circuit may represent an intersectional target to further investigate the relationship between social isolation and type 2 diabetes. Serotonin-producing neurons of adolescent-isolation mice produce fewer transcripts for the GLP-1 receptor, and GLP-1 neurons produce fewer transcripts for the 5-HT 1A serotonin receptor.

5.
bioRxiv ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37398335

RESUMEN

Social interaction is a core component of motivational behavior that is perturbed across multiple neuropsychiatric disorders, including alcohol use disorder (AUD). Positive social bonds are neuroprotective and enhance recovery from stress, so reduced social interaction in AUD may delay recovery and lead to alcohol relapse. We report that chronic intermittent ethanol (CIE) induces social avoidance in a sex-dependent manner and is associated with hyperactivity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN). While 5-HT DRN neurons are generally thought to enhance social behavior, recent evidence suggests that specific 5-HT pathways can be aversive. Using chemogenetic iDISCO, the nucleus accumbens (NAcc) was identified as one of 5 regions that were activated by 5-HT DRN stimulation. We then employed an array of molecular genetic tools in transgenic mice to show that 5-HT DRN inputs to NAcc dynorphin neurons drive social avoidance in male mice after CIE by activating 5-HT 2C receptors. NAcc dynorphin neurons also inhibit dopamine release during social interaction, reducing the motivational drive to engage with social partners. This study reveals that excessive serotonergic drive after chronic alcohol can promote social aversion by inhibiting accumbal dopamine release. Drugs that boost brain serotonin levels may be contraindicated for individuals with AUD.

6.
Acta Neuropathol Commun ; 11(1): 57, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37009893

RESUMEN

Alzheimer's disease (AD) poses an ever-increasing public health concern as the population ages, affecting more than 6 million Americans. AD patients present with mood and sleep changes in the prodromal stages that may be partly driven by loss of monoaminergic neurons in the brainstem, but a causal relationship has not been firmly established. This is due in part to a dearth of animal models that recapitulate early AD neuropathology and symptoms. The goal of the present study was to evaluate depressive and anxiety-like behaviors in a mouse model of AD that overexpresses human wild-type tau (htau) prior to the onset of cognitive impairments and assess these behavior changes in relationship to tau pathology, neuroinflammation, and monoaminergic dysregulation in the dorsal raphe nucleus (DRN) and locus coeruleus (LC). We observed depressive-like behaviors at 4 months in both sexes and hyperlocomotion in male htau mice. Deficits in social interaction persisted at 6 months and were accompanied by an increase in anxiety-like behavior in males. The behavioral changes at 4 months coincided with a lower density of serotonergic (5-HT) neurons, downregulation of 5-HT markers, reduced excitability of 5-HT neurons, and hyperphosphorylated tau in the DRN. Inflammatory markers were also upregulated in the DRN along with protein kinases and transglutaminase 2, which may promote tau phosphorylation and aggregation. Loss of 5-HT innervation to the entorhinal cortex and dentate gyrus of the hippocampus was also observed and may have contributed to depressive-like behaviors. There was also reduced expression of noradrenergic markers in the LC along with elevated phospho-tau expression, but this did not translate to a functional change in neuronal excitability. In total, these results suggest that tau pathology in brainstem monoaminergic nuclei and the resulting loss of serotonergic and/or noradrenergic drive may underpin depressive- and anxiety-like behaviors in the early stages of AD.


Asunto(s)
Enfermedad de Alzheimer , Femenino , Humanos , Ratones , Masculino , Animales , Enfermedad de Alzheimer/patología , Proteínas tau/genética , Proteínas tau/metabolismo , Serotonina/metabolismo , Locus Coeruleus/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Norepinefrina/metabolismo , Modelos Animales de Enfermedad
7.
Alcohol Clin Exp Res (Hoboken) ; 47(2): 219-239, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36529893

RESUMEN

BACKGROUND: People with alcohol use disorder (AUD) may be at higher risk for COVID-19. Angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are required for cellular entry by SARS-CoV-2, but information on their expression in specific brain regions after alcohol exposure is limited. We sought to clarify how chronic alcohol exposure affects ACE2 expression in monoaminergic brainstem circuits and other putative SARS-CoV-2 entry points. METHODS: Brains were examined for ACE2 using immunofluorescence after 4 weeks of chronic intermittent ethanol (CIE) vapor inhalation. We also examined TMPRSS2, Cathepsin L, and ADAM17 by Western blot and RAS pathway mediators and pro-inflammatory markers via RT-qPCR. RESULTS: ACE2 was increased in most brain regions following CIE including the olfactory bulb (OB), hypothalamus (HT), raphe magnus (RMG), raphe obscurus (ROB), locus coeruleus (LC), and periaqueductal gray (PAG). We also observed increased colocalization of ACE2 with monoaminergic neurons in brainstem nuclei. Moreover, soluble ACE2 (sACE2) was elevated in OB, HT, and LC. The increase in sACE2 in OB and HT was accompanied by upregulation of ADAM17, an ACE2 sheddase, while TMPRSS2 increased in HT and LC. Cathepsin L, an endosomal receptor involved in viral entry, was also increased in OB. Alcohol can increase Angiotensin II, which triggers a pro-inflammatory response that may upregulate ACE2 via activation of RAS pathway receptors AT1R/AT2R. ACE2 then metabolizes Angiotensin II to Angiotensin (1-7) and provokes an anti-inflammatory response via MAS1. Accordingly, we report that AT1R/AT2R mRNA decreased in OB and increased in the LC, while MAS1 mRNA increased in both OB and LC. Other mRNAs for pro-inflammatory markers were also dysregulated in OB, HT, raphe, and LC. CONCLUSIONS: Our results suggest that alcohol triggers a compensatory upregulation of ACE2 in the brain due to disturbed RAS and may increase the risk or severity of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Encéfalo/metabolismo , Catepsina L/metabolismo , Etanol/efectos adversos , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , ARN Mensajero , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
8.
Brain Behav Immun ; 107: 419-431, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35907582

RESUMEN

Adolescent alcohol use can permanently alter brain function and lead to poor health outcomes in adulthood. Emerging evidence suggests that alcohol use can predispose individuals to pain disorders or exacerbate existing pain conditions, but the underlying neural mechanisms are currently unknown. Here we report that mice exposed to adolescent intermittent access to ethanol (AIE) exhibit increased pain sensitivity and depressive-like behaviors that persist for several weeks after alcohol cessation and are accompanied by elevated CD68 expression in microglia and reduced numbers of serotonin (5-HT)-expressing neurons in the dorsal raphe nucleus (DRN). 5-HT expression was also reduced in the thalamus, anterior cingulate cortex (ACC) and amygdala as well as the lumbar dorsal horn of the spinal cord. We further demonstrate that chronic minocycline administration after AIE alleviated hyperalgesia and social deficits, while chemogenetic activation of microglia in the DRN of ethanol-naïve mice reproduced the effects of AIE on pain and social behavior. Chemogenetic activation of microglia also reduced tryptophan hydroxylase 2 (Tph2) expression and was negatively correlated with the number of 5-HT-immunoreactive cells in the DRN. Taken together, these results indicate that microglial activation in the DRN may be a primary driver of pain, negative affect, and 5-HT depletion after AIE.


Asunto(s)
Consumo de Alcohol en Menores , Ratones , Animales , Etanol , Serotonina , Dolor
9.
bioRxiv ; 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35378747

RESUMEN

Emerging evidence suggests that people with alcohol use disorders are at higher risk for SARS-CoV-2. SARS-CoV-2 engages angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) receptors for cellular entry. While ACE2 and TMPRSS2 genes are upregulated in the cortex of alcohol-dependent individuals, information on expression in specific brain regions and neural populations implicated in SARS-CoV-2 neuroinvasion, particularly monoaminergic neurons, is limited. We sought to clarify how chronic alcohol exposure affects ACE2 and TMPRSS2 expression in monoaminergic brainstem circuits and other putative SARS-CoV-2 entry points. C57BL/6J mice were exposed to chronic intermittent ethanol (CIE) vapor for 4 weeks and brains were examined using immunofluorescence. We observed increased ACE2 levels in the olfactory bulb and hypothalamus following CIE, which are known to mediate SARS-CoV-2 neuroinvasion. Total ACE2 immunoreactivity was also elevated in the raphe magnus (RMG), raphe obscurus (ROB), and locus coeruleus (LC), while in the dorsal raphe nucleus (DRN), ROB, and LC we observed increased colocalization of ACE2 with monoaminergic neurons. ACE2 also increased in the periaqueductal gray (PAG) and decreased in the amygdala. Whereas ACE2 was detected in most brain regions, TMPRSS2 was only detected in the olfactory bulb and DRN but was not significantly altered after CIE. Our results suggest that previous alcohol exposure may increase the risk of SARS-CoV-2 neuroinvasion and render brain circuits involved in cardiovascular and respiratory function as well as emotional processing more vulnerable to infection, making adverse outcomes more likely. Additional studies are needed to define a direct link between alcohol use and COVID-19 infection.

10.
Neuropharmacology ; 168: 107759, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31494142

RESUMEN

Neuroadaptations in brain regions that regulate emotional and reward-seeking behaviors have been suggested to contribute to pathological behaviors associated with alcohol-use disorder. One such region is the bed nucleus of the stria terminalis (BNST), which has been linked to both alcohol consumption and alcohol withdrawal-induced anxiety and depression. Recently, we identified a GABAergic microcircuit in the BNST that regulates anxiety-like behavior. In the present study, we examined how chronic alcohol exposure alters this BNST GABAergic microcircuit in mice. We selectively targeted neurons expressing corticotropin releasing factor (CRF) using a CRF-reporter mouse line and combined retrograde labeling to identify BNST projections to the ventral tegmental area (VTA) and lateral hypothalamus (LH). Following 72 h of withdrawal from four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure, the excitability of a sub-population of putative local CRF neurons that did not project to either VTA or LH (CRFnon-VTA/LH neurons) was increased. Withdrawal from CIE also increased excitability of non-CRF BNST neurons that project to both LH and VTA (BNSTnon-CRF-proj neurons). Furthermore, both populations of neurons had a reduction in spontaneous EPSC amplitude while frequency was unaltered. Withdrawal from chronic alcohol was accompanied by a significant increase in spontaneous IPSC frequency selectively in the BNSTnon-CRF-proj neurons. Together, these data suggest that withdrawal from chronic ethanol dysregulates local CRF-GABAergic microcircuit to inhibit anxiolytic outputs of the BNST which may contribute to enhanced anxiety during alcohol withdrawal and drive alcohol-seeking behavior. This article is part of the special issue on 'Neuropeptides'.


Asunto(s)
Etanol/administración & dosificación , Neuronas GABAérgicas/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Núcleos Septales/efectos de los fármacos , Animales , Etanol/toxicidad , Neuronas GABAérgicas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/fisiopatología , Técnicas de Cultivo de Órganos , Núcleos Septales/fisiopatología
11.
ACS Chem Neurosci ; 10(7): 3154-3166, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31140276

RESUMEN

Serotonin (5-hydroxytryptamine; 5-HT) coordinates behavioral responses to stress through a variety of presynaptic and postsynaptic receptors distributed across functionally diverse neuronal networks in the central nervous system. Efferent 5-HT projections from the dorsal raphe nucleus (DRN) to the bed nucleus of the stria terminalis (BNST) are generally thought to enhance anxiety and aversive learning by activating 5-HT2C receptor (5-HT2CR) signaling in the BNST, although an opposing role for postsynaptic 5-HT1A receptors has recently been suggested. In the present study, we sought to delineate a role for postsynaptic 5-HT1A receptors in the BNST in aversive behaviors using a conditional knockdown of the 5-HT1A receptor. Both males and females were tested to dissect out sex-specific effects. We found that male mice have significantly reduced fear memory recall relative to female mice and inactivation of 5-HT1A receptor in the BNST increases contextual fear conditioning in male mice so that they resemble the females. This coincided with an increase in neuronal excitability in males, suggesting that 5-HT1A receptor deletion may enhance contextual fear recall by disinhibiting fear memory circuits in the BNST. Interestingly, 5-HT1A receptor knockdown did not significantly alter anxiety-like behavior in male or female mice, which is in agreement with previous findings that anxiety and fear are modulated by dissociable circuits in the BNST. Overall, these results suggest that BNST 5-HT1A receptors do not significantly alter behavior under basal conditions, but can act as a molecular brake that buffer against excessive activation of aversive circuits in more threatening contexts.


Asunto(s)
Ansiedad/metabolismo , Miedo/fisiología , Neuronas/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Núcleos Septales/metabolismo , Animales , Conducta Animal/fisiología , Conducta Alimentaria/fisiología , Femenino , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Ratones Transgénicos , Actividad Motora/fisiología , Receptor de Serotonina 5-HT1A/genética , Factores Sexuales
12.
Addict Biol ; 22(2): 423-434, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26687341

RESUMEN

Addictions, including alcohol use disorders, are characterized by the loss of control over drug seeking and consumption, but the neural circuits and signaling mechanisms responsible for the transition from controlled use to uncontrolled abuse remain incompletely understood. Prior studies have shown that 'compulsive-like' behaviors in rodents, for example, persistent responding for ethanol (EtOH) despite punishment, are increased after chronic exposure to EtOH. The main goal of the current study was to assess the effects of chronic intermittent EtOH (CIE) exposure on multiple, putative measures of compulsive-like EtOH seeking in C57BL/6 J mice. Mice were exposed to two or four weekly cycles of CIE and then, post-withdrawal, tested for progressive ratio responding for EtOH, sustained responding during signaled EtOH unavailability and (footshock) punished suppression of responding for EtOH. Results showed that mice exposed to CIE exhibited attenuated suppression of EtOH seeking during punishment, as compared with air-exposed controls. By contrast, CIE exposure affected neither punished food reward-seeking behavior, nor other putative measures of compulsive-like EtOH seeking. Ex vivo reverse transcription polymerase chain reaction analysis of brain tissue found reduced sensitivity to punished EtOH seeking after CIE exposure was accompanied by a significant increase in gene expression of the GluN1 and GluN2A subunits of the N-methyl-d-aspartate receptor, specifically in the medial orbitofrontal cortex. Moreover, slice electrophysiological analysis revealed increased N-methyl-d-aspartate receptor-mediated currents in the orbitofrontal cortex after CIE exposure in test-naïve mice. Collectively, the current findings add to the growing body of evidence demonstrating that chronic exposure to EtOH fosters resistance to punished EtOH seeking in association with adaptations in cortical glutamatergic transmission.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Conducta Compulsiva , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Etanol/farmacología , Castigo , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Depresores del Sistema Nervioso Central/administración & dosificación , Conducta Compulsiva/genética , Etanol/administración & dosificación , Alimentos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Recompensa
13.
Nature ; 537(7618): 97-101, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27556938

RESUMEN

Serotonin (also known as 5-hydroxytryptamine (5-HT)) is a neurotransmitter that has an essential role in the regulation of emotion. However, the precise circuits have not yet been defined through which aversive states are orchestrated by 5-HT. Here we show that 5-HT from the dorsal raphe nucleus (5-HTDRN) enhances fear and anxiety and activates a subpopulation of corticotropin-releasing factor (CRF) neurons in the bed nucleus of the stria terminalis (CRFBNST) in mice. Specifically, 5-HTDRN projections to the BNST, via actions at 5-HT2C receptors (5-HT2CRs), engage a CRFBNST inhibitory microcircuit that silences anxiolytic BNST outputs to the ventral tegmental area and lateral hypothalamus. Furthermore, we demonstrate that this CRFBNST inhibitory circuit underlies aversive behaviour following acute exposure to selective serotonin reuptake inhibitors (SSRIs). This early aversive effect is mediated via the corticotrophin-releasing factor type 1 receptor (CRF1R, also known as CRHR1), given that CRF1R antagonism is sufficient to prevent acute SSRI-induced enhancements in aversive learning. These results reveal an essential 5-HTDRN→CRFBNST circuit governing fear and anxiety, and provide a potential mechanistic explanation for the clinical observation of early adverse events to SSRI treatment in some patients with anxiety disorders.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Ansiedad/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Miedo/fisiología , Serotonina/metabolismo , Tálamo/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Animales , Ansiedad/inducido químicamente , Trastornos de Ansiedad/inducido químicamente , Núcleo Dorsal del Rafe/efectos de los fármacos , Núcleo Dorsal del Rafe/metabolismo , Miedo/efectos de los fármacos , Femenino , Fluoxetina/efectos adversos , Fluoxetina/farmacología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Optogenética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/efectos adversos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Tálamo/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo
14.
Alcohol Clin Exp Res ; 40(6): 1192-201, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27161942

RESUMEN

Current pharmacological treatments for alcohol dependence have focused on reducing alcohol consumption, but to date there are few treatments that also address the negative affective symptoms during acute and protracted alcohol withdrawal which are often exacerbated in people with comorbid anxiety and depression. Selective serotonin reuptake inhibitors (SSRIs) are sometimes prescribed to ameliorate these symptoms but can exacerbate anxiety and cravings in a select group of patients. In this critical review, we discuss recent literature describing an association between alcohol dependence, the SERT linked polymorphic region (5-HTTLPR), and pharmacological response to SSRIs. Given the heterogeneity in responsiveness to serotonergic drugs across the spectrum of alcoholic subtypes, we assess the contribution of specific 5-HT circuits to discrete endophenotypes of alcohol dependence. 5-HT circuits play a distinctive role in reward, stress, and executive function which may account for the variation in response to serotonergic drugs. New optogenetic and chemogenetic methods for dissecting 5-HT circuits in alcohol dependence may provide clues leading to more effective pharmacotherapies. Although our current understanding of the role of 5-HT systems in alcohol dependence is incomplete, there is some evidence to suggest that 5-HT3 receptor antagonists are effective in people with the L/L genotype of the 5-HTTLPR polymorphism while SSRIs may be more beneficial to people with the S/L or S/S genotype. Studies that assess the impact of serotonin transporter polymorphisms on 5-HT circuit function and the subsequent development of alcohol use disorders will be an important step forward in treating alcohol dependence.


Asunto(s)
Alcoholismo/genética , Alcoholismo/fisiopatología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Serotonina/fisiología , Alcoholismo/complicaciones , Alcoholismo/tratamiento farmacológico , Animales , Ansiedad/complicaciones , Ansiedad/tratamiento farmacológico , Depresión/complicaciones , Depresión/tratamiento farmacológico , Endofenotipos , Humanos , Polimorfismo Genético , Antagonistas del Receptor de Serotonina 5-HT3/uso terapéutico , Inhibidores Selectivos de la Recaptación de Serotonina/efectos adversos , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Síndrome de Abstinencia a Sustancias/complicaciones , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico
15.
Neuropsychopharmacology ; 41(5): 1404-15, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26383016

RESUMEN

Elucidating how the brain's serotonergic network mediates diverse behavioral actions over both relatively short (minutes-hours) and long period of time (days-weeks) remains a major challenge for neuroscience. Our relative ignorance is largely due to the lack of technologies with robustness, reversibility, and spatio-temporal control. Recently, we have demonstrated that our chemogenetic approach (eg, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)) provides a reliable and robust tool for controlling genetically defined neural populations. Here we show how short- and long-term activation of dorsal raphe nucleus (DRN) serotonergic neurons induces robust behavioral responses. We found that both short- and long-term activation of DRN serotonergic neurons induce antidepressant-like behavioral responses. However, only short-term activation induces anxiogenic-like behaviors. In parallel, these behavioral phenotypes were associated with a metabolic map of whole brain network activity via a recently developed non-invasive imaging technology DREAMM (DREADD Associated Metabolic Mapping). Our findings reveal a previously unappreciated brain network elicited by selective activation of DRN serotonin neurons and illuminate potential therapeutic and adverse effects of drugs targeting DRN neurons.


Asunto(s)
Ansiedad/fisiopatología , Depresión/fisiopatología , Núcleo Dorsal del Rafe/fisiología , Neuronas Serotoninérgicas/fisiología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiología , Ritmo Circadiano , Drogas de Diseño/administración & dosificación , Núcleo Dorsal del Rafe/efectos de los fármacos , Núcleo Dorsal del Rafe/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas Serotoninérgicas/efectos de los fármacos , Neuronas Serotoninérgicas/metabolismo , Factores de Tiempo
16.
Neuropharmacology ; 99: 735-49, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26188147

RESUMEN

Chronic alcohol consumption and withdrawal leads to anxiety, escalated alcohol drinking behavior, and alcohol dependence. Alterations in the function of key structures within the cortico-limbic neural circuit have been implicated in underlying the negative behavioral consequences of chronic alcohol exposure in both humans and rodents. Here, we used chronic intermittent ethanol vapor exposure (CIE) in male C57BL/6J mice to evaluate the effects of chronic alcohol exposure and withdrawal on anxiety-like behavior and basal synaptic function and neuronal excitability in prefrontal cortical and extended amygdala brain regions. Forty-eight hours after four cycles of CIE, mice were either assayed in the marble burying test (MBT) or their brains were harvested and whole-cell electrophysiological recordings were performed in the prelimbic and infralimbic medial prefrontal cortex (PLC and ILC), the lateral and medial central nucleus of the amygdala (lCeA and mCeA), and the dorsal and ventral bed nucleus of the stria terminalis (dBNST and vBNST). Ethanol-exposed mice displayed increased anxiety in the MBT compared to air-exposed controls, and alterations in neuronal function were observed in all brain structures examined, including several distinct differences between subregions within each structure. Chronic ethanol exposure induced hyperexcitability of the ILC, as well as a shift toward excitation in synaptic drive and hyperexcitability of vBNST neurons; in contrast, there was a net inhibition of the CeA. This study reveals extensive effects of chronic ethanol exposure on the basal function of cortico-limbic brain regions, suggests that there may be complex interactions between these regions in the regulation of ethanol-dependent alterations in anxiety state, and highlights the need for future examination of projection-specific effects of ethanol in cortico-limbic circuitry.


Asunto(s)
Trastornos Relacionados con Alcohol/fisiopatología , Amígdala del Cerebelo/efectos de los fármacos , Depresores del Sistema Nervioso Central/toxicidad , Etanol/toxicidad , Neuronas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Trastornos Relacionados con Alcohol/psicología , Amígdala del Cerebelo/fisiopatología , Animales , Trastornos de Ansiedad/inducido químicamente , Trastornos de Ansiedad/fisiopatología , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Neuronas/fisiología , Técnicas de Placa-Clamp , Corteza Prefrontal/fisiopatología , Núcleos Septales/efectos de los fármacos , Núcleos Septales/fisiopatología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
17.
ACS Chem Neurosci ; 6(7): 1026-39, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25654315

RESUMEN

Alcoholism is a progressive brain disorder that is marked by increased sensitivity to the positive and negative reinforcing properties of ethanol, compulsive and habitual use despite negative consequences, and chronic relapse to alcohol drinking despite repeated attempts to reduce intake or abstain from alcohol. Emerging evidence from preclinical and clinical studies implicates serotonin (5-hydroxytryptamine; 5-HT) systems in the pathophysiology of alcohol dependence, suggesting that drugs targeting 5-HT systems may have utility in the treatment of alcohol use disorders. In this Review, we discuss the role of 5-HT systems in alcohol dependence with a focus on 5-HT interactions with neural circuits that govern all three stages of the addiction cycle. We attempt to clarify how 5-HT influences circuit function at these different stages with the goal of identifying neural targets for pharmacological treatment of this debilitating disorder.


Asunto(s)
Trastornos Relacionados con Alcohol/fisiopatología , Encéfalo/fisiopatología , Serotonina/metabolismo , Animales , Encéfalo/efectos de los fármacos , Ansia/efectos de los fármacos , Ansia/fisiología , Humanos , Receptores de Serotonina/metabolismo , Refuerzo en Psicología
18.
Neuropsychopharmacology ; 40(3): 590-600, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25120075

RESUMEN

Alcoholism is a pervasive disorder perpetuated in part to relieve negative mood states like anxiety experienced during alcohol withdrawal. Emerging evidence demonstrates a role for the serotonin-rich dorsal raphe (DR) in anxiety following ethanol withdrawal. The current study examined the effects of chronic ethanol vapor exposure on the DR using slice electrophysiology in male DBA2/J mice. We found that chronic ethanol exposure resulted in deficits in social approach indicative of increased anxiety-like behavior at both 24 h and 7 days post-ethanol exposure. At 24 h post-ethanol exposure, we observed increased excitability and decreased spontaneous inhibitory transmission (inhibitory postsynaptic currents, IPSCs) in the DR. At 7 days post-ethanol exposure, we observed increased spontaneous and miniature excitatory transmission (excitatory postsynaptic currents, EPSCs). Because acute ethanol alters GABA transmission in other brain regions, we assessed the effects of ex vivo ethanol (50 mM) on miniature IPSCs (mIPSCs) in the DR 24-h post-ethanol exposure. Bath application of ethanol enhanced the amplitude of mIPSCs in cells from ethanol-naive and chronic intermittent ethanol-exposed (CIE) mice, but significantly enhanced the frequency of mIPSCs only in cells from CIE mice, suggesting that DR neurons are more sensitive to the inhibitory effects of acute ethanol following CIE. On the basis of these findings, we hypothesize that net excitation of DR neurons following chronic ethanol exposure contributes to enhanced anxiety during ethanol withdrawal, and that increased sensitivity of DR neurons to subsequent ethanol exposure may mediate acute ethanol's ability to relieve anxiety during ethanol withdrawal.


Asunto(s)
Núcleo Dorsal del Rafe/efectos de los fármacos , Núcleo Dorsal del Rafe/fisiopatología , Etanol/administración & dosificación , Etanol/farmacología , Animales , Buspirona/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Ratones , Potenciales Postsinápticos Miniatura/fisiología , Neuronas/fisiología , Conducta Social , Síndrome de Abstinencia a Sustancias/fisiopatología , Factores de Tiempo
19.
Neuropharmacology ; 89: 157-67, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25229718

RESUMEN

One of the hallmarks of alcohol dependence is the presence of a withdrawal syndrome during abstinence, which manifests as physical craving for alcohol accompanied by subjective feelings of anxiety. Using a model of chronic intermittent ethanol (CIE) vapor in mice, we investigated the role of serotonin2c receptor (5HT2c-R) signaling in the BNST as a neural substrate underlying ethanol-induced anxiety during withdrawal. Mice were subjected to a 5-day CIE regimen of 16 h of ethanol vapor exposure followed by an 8 h "withdrawal" period between exposures. After the 5th and final exposure, mice were withdrawn for 24 h or 1 week before experiments began. Anxiety-like behavior was assessed in the social approach, light dark, and open field tests with mice showing deficits in social, but not general anxiety-like behavior that was alleviated by pretreatment with the 5HT2c-R antagonist SB 242,084 (3 mg/kg, i.p.) 24 h and 1 week post-CIE. Using immunohistochemistry and whole cell patch clamp electrophysiology, we also found that CIE increased FOS-IR and enhanced neuronal excitability in the ventral BNST (vBNST) 24 h into withdrawal in a 5HT2c-R dependent manner. This enhanced excitability persisted for 1 week post-CIE. We also found that mCPP, a 5HT2c/b agonist, induced a more robust depolarization in cells of the vBNST in CIE mice, confirming that 5HT2c-R signaling is upregulated in the vBNST following CIE. Taken together, these results suggest that CIE upregulates 5HT2c-R signaling in the vBNST, leading to increased excitability. This enhanced excitability of the vBNST may drive increased anxiety-like behavior during ethanol withdrawal.


Asunto(s)
Alcoholismo/metabolismo , Ansiedad/metabolismo , Etanol/administración & dosificación , Receptor de Serotonina 5-HT2C/metabolismo , Núcleos Septales/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/fisiología , Alcoholismo/psicología , Animales , Ansiedad/psicología , Masculino , Ratones , Ratones Endogámicos DBA , Núcleos Septales/efectos de los fármacos , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Síndrome de Abstinencia a Sustancias/psicología
20.
Mol Cells ; 38(1): 1-13, 2015 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-25475545

RESUMEN

Recent technical developments have transformed how neuroscientists can probe brain function. What was once thought to be difficult and perhaps impossible, stimulating a single set of long range inputs among many, is now relatively straight-forward using optogenetic approaches. This has provided an avalanche of data demonstrating causal roles for circuits in a variety of behaviors. However, despite the critical role that neuropeptide signaling plays in the regulation of behavior and physiology of the brain, there have been remarkably few studies demonstrating how peptide release is causally linked to behaviors. This is likely due to both the different time scale by which peptides act on and the modulatory nature of their actions. For example, while glutamate release can effectively transmit information between synapses in milliseconds, peptide release is potentially slower [See the excellent review by Van Den Pol on the time scales and mechanisms of release (van den Pol, 2012)] and it can only tune the existing signals via modulation. And while there have been some studies exploring mechanisms of release, it is still not as clearly known what is required for efficient peptide release. Furthermore, this analysis could be complicated by the fact that there are multiple peptides released, some of which may act in contrast. Despite these limitations, there are a number of groups making progress in this area. The goal of this review is to explore the role of peptide signaling in one specific structure, the bed nucleus of the stria terminalis, that has proven to be a fertile ground for peptide action.


Asunto(s)
Neuropéptidos/metabolismo , Núcleos Septales/fisiología , Transducción de Señal , Animales , Humanos , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA