RESUMEN
Knowledge of the background activity concentrations of anthropogenic radionuclides before the start of operations of the new nuclear facilities in Belarus is of great value worldwide. Inland water bodies in Lithuania (specifically the Neris River, the Nemunas River and the Curonian Lagoon) are near the site of the Belarusian NPP under construction and, for this reason, sediments and flooded soils from these sensitive areas were analysed for radiocesium and plutonium isotopes (macrophytes were analysed only for 137Cs) in 2011-2012. The 137Cs and 239+240Pu activity concentrations in bottom sediments from the Nemunas River, sampled in 1995-1996 and re-calculated to the year 2016, were compared with those of 2011-2012. The obtained activity of 137Cs in bottom sediments of the Nemunas River and Curonian Lagoon varied from 1 Bq/kg to 47.0 Bq/kg. The activity of 137Cs in the tested soils ranged from 5.3 B g/kg to 32.9 Bq/kg. The 239+240Pu activity in bottom sediments of the studied sampling sites varied between 0.016 and 0.34 Bq/kg and in flooded soils from 0.064 to 0.55 Bq/kg. The 238Pu activity values were very low or lower than the detection limit. The activity of 137Cs in macrophytes varied from values lower than the detection limit to 6 Bq/kg. A strong positive linear correlation for bottom sediments was calculated between: 239+240Pu and total organic carbon (TOC), r = 0.86, p-value 0.01; 239+240Pu and silt, r = 0.80, p-value 0.029; 137Cs and silt, r = 0.78, p-value 0.04; and 137Cs and TOC, r = 0.85, p-value 0.015. The similar peculiarities of 137Cs and 239+240Pu accumulation in bottom sediments and flooded soil allow us to assume that 137Cs can be used as a tracer for 239+240Pu in the initial stage of searching for radionuclide accumulation zones. A remaining impact of the Chernobyl fallout in average comprised: in the Lower Nemunas River and Curonian Lagoon sediments - 51%, in the Middle Nemunas River -90% and in the floodplains of the Nemunas River - 59%, while the provenance of plutonium in studied bottom sediments and flooded soil was the global fallout.
Asunto(s)
Radioisótopos de Cesio/análisis , Contaminantes Radiactivos del Agua/análisis , Sedimentos Geológicos/química , Lituania , Plantas de Energía Nuclear , Monitoreo de Radiación , Ceniza Radiactiva/análisis , República de Belarús , Ríos , Contaminantes Radiactivos del Suelo/análisisRESUMEN
The radiological doses to non-human biota of freshwater ecosystem in the Ignalina NPP cooling pond - Lake Druksiai were evaluated for several cases including the plant's operation period and initial decommissioning activities, using the ERICA 1.2 code with IAEA SRS-19 models integrated approach and tool. Among the Lake Druksiai freshwater ecosystem reference organisms investigated the highest exposure dose rate was determined for bottom fauna - benthic organisms (mollusc-bivalves, crustaceans, mollusc-gastropods, insect larvae), and among the other reference organisms - for vascular plants. The mean and maximum total dose rate values due to anthropogenic radionuclide ionising radiation impact in all investigated cases were lower than the ERICA screening dose rate value of 10 µGy/h. The main exposure of reference organisms as a result of Ignalina NPP former effluent to Lake Druksiai is due to ionizing radiation of radionuclides (60)Co and (137)Cs, of predicted releases to Lake Druksiai during initial decommissioning period - due to radionuclides (60)Co, (134)Cs and (137)Cs, and as a result of predicted releases to Lake Druksiai from low- and intermediate-level short-lived radioactive waste disposal site in 30-100 year period - due to radionuclides (99)Tc and (3)H. The risk quotient expected values in all investigated cases were <1, and therefore the risk to non-human biota can be considered negligible with the exception of a conservative risk quotient for insect larvae. Radiological protection of non-human biota in Lake Druksiai, the Ignalina NPP cooling pond, is both feasible and acceptable.
Asunto(s)
Organismos Acuáticos/efectos de la radiación , Sedimentos Geológicos/análisis , Lagos/análisis , Monitoreo de Radiación , Contaminantes Radiactivos del Agua/toxicidad , Ecosistema , Lituania , Modelos Teóricos , Plantas de Energía Nuclear , Estanques/análisisRESUMEN
Based on γ-ray emitting artificial radionuclide spectrometric measurements, an assessment of areal and vertical distribution of (137)Cs, (60)Co and (54)Mn activity concentrations in bottom sediments of Lake Druksiai was performed. Samples of bottom sediments from seven monitoring stations within the cooling basin were collected in 1988-1996 and 2007-2010 (in July-August). For radionuclide areal distribution analysis, samples from the surface 0-5 cm layer were used. Multi sample cores sliced 2 cm, 3 cm or 5 cm thick were used to study the vertical distribution of radionuclides. The lowest (137)Cs activity concentrations were obtained for two stations that were situated close to channels with radionuclide discharges, but with sediments that had a significantly smaller fraction of organic matter related to finest particles and consequently smaller radionuclide retention potential. The (137)Cs activity concentration was distributed quite evenly in the bottom sediments from other investigated monitoring stations. The highest (137)Cs activity concentrations in the bottom sediments of Lake Druksiai were measured in the period of 1988-1989; in 1990, the (137)Cs activity concentrations slightly decreased and they varied insignificantly over the investigation period. The obtained (238)Pu/(239,240)Pu activity ratio values in the bottom sediments of Lake Druksiai represented radioactive pollution with plutonium from nuclear weapon tests. Higher (60)Co and (54)Mn activity concentrations were observed in the monitoring stations that were close to the impact zones of the technical water outlet channel and industrial rain drainage system channel. (60)Co and (54)Mn activity concentrations in the bottom sediments of Lake Druksiai significantly decreased when operations at both INPP reactor units were stopped. The vertical distribution of radionuclides in bottom sediments revealed complicated sedimentation features, which may have been affected by a number of natural and anthropogenic factors resulting in mixing, resuspension and remobilization of sediments and radionuclides. The associated with particles (137)Cs flux was 129 Bq/(m(2) year). The (137)Cs transfer rate from water into bottom sediments was 14.3 year(-1) (or, the removal time was 25 days). The Kd value for (137)Cs in situ estimated from trap material was 80 m(3)/kg. The associated with particles (60)Co flux was 21 Bq/(m(2) year), when (60)Co activity concentration in sediment trap particles was 15.7 ± 5 Bq/kg. (60)Co activity concentration in soluble form was less than the minimum detectable activity (MDA = 1.3 Bq/m(3)). Then, the conservatively derived Kd value for (60)Co was >90 m(3)/kg.
Asunto(s)
Sedimentos Geológicos/análisis , Lagos/análisis , Monitoreo de Radiación , Radioisótopos/análisis , Contaminantes Radiactivos del Agua/análisis , Lituania , Plantas de Energía Nuclear , Estaciones del AñoRESUMEN
The radioecological state of the forest ecosystem in the vicinity of the Ignalina Power Plant prior to decommissioning was analysed with specific emphasis on (137)Cs and (90)Sr activity concentrations in plant species growing in two reference sampling sites (Tilze and Grikiniskes). In the period of 1996-2008 the mean contamination of plants with (137)Cs was from 45 to 119 Bq/kg and with (90)Sr - from 3 to 42 Bq/kg. Measured (137)Cs TF values for soil-root transfer mainly ranged between 1.0-1.4, except for Calamagrostis arundinacea which had a TF value of 0.1. On average, the (137)Cs TF value from root to shoot was 1.7 fold higher than for soil to root transfer. (90)Sr TF values (soil-root) were in the range of 1.2-1.8 but for Calluna vulgaris it was 0.2. The mean root to shoot TF value for (90)Sr was 7.7 fold higher. These results indicate the higher (90)Sr bioavailability than that of (137)Cs in the forested area. The Grikiniskes reference site is located nearby the Ignalina NPP, specifically the heated water outlet channel, which results in altered microclimatic conditions. These specific microclimatic conditions result in relationships between (137)Cs TF (soil-root) values and pH, moisture and organic matter content in the soil at Grikiniskes which appear to be different to those at the Tilze reference sampling site.
Asunto(s)
Radioisótopos de Cesio/análisis , Magnoliopsida/química , Plantas de Energía Nuclear , Contaminantes Radiactivos del Suelo/análisis , Radioisótopos de Estroncio/análisis , Radioisótopos de Cesio/metabolismo , Ecosistema , Lituania , Magnoliopsida/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Brotes de la Planta/química , Brotes de la Planta/metabolismo , Monitoreo de Radiación , Ceniza Radiactiva , Contaminantes Radiactivos del Suelo/metabolismo , Sphagnopsida/química , Sphagnopsida/metabolismo , Radioisótopos de Estroncio/metabolismo , ÁrbolesRESUMEN
The radiological assessment of non-human biota to demonstrate protection is now accepted by a number of international and national bodies. Therefore, it is necessary to develop a scientific basis to assess and evaluate exposure of biota to ionizing radiation. Radionuclides from the Ignalina Nuclear Power Plant (Lithuania) were discharged into Lake Druksiai cooling pond. Additional radionuclide migration and recharge to this lake from a hypothetical near-surface, low-level radioactive waste disposal, to be situated 1.5 km from the lake, had been simulated using RESRAD-OFFSITE code. This paper uses ERICA Integrated Approach with associated tools and databases to compare the radiological dose to freshwater reference organisms. Based on these data, it can be concluded that background dose rates to non-human biota in Lake Druksiai far exceed those attributable to anthropogenic radionuclides. With respect the fishery and corresponding annual committed effective human dose as a result of this fish consumption Lake Druksiai continues to be a high-productivity water body with intensive angling and possible commercial fishing.
Asunto(s)
Organismos Acuáticos/metabolismo , Radioisótopos/análisis , Radioisótopos/metabolismo , Contaminantes Radiactivos del Agua/análisis , Contaminantes Radiactivos del Agua/metabolismo , Ecosistema , Agua Dulce , Lituania , Centrales Eléctricas , Monitoreo de Radiación , Residuos Radiactivos/análisisRESUMEN
The radiological assessment of non-human biota is now accepted by a number of international bodies. In this connection the scientific basis to assess and evaluate biota internal and external radiation exposure is required. This paper presents the comparison of freshwater biota (hydrophyte species) exposure due to discharged anthropogenic radionuclides with that due to natural background radiation. The radionuclides from Ignalina Nuclear Power Plant (Lithuania) are discharged into cooling pond - Druksiai Lake. Submerged hydrophytes were selected as biota exposure indicators because they represent the largest biomass in this lake and have comparatively high radionuclide activity concentrations. The detailed methodology evaluation of the submerged hydrophyte dose rate is presented. The ionizing radiation exposure dose rates to submerged hydrophyte roots and above sediment parts due to the major radionuclides ((54)Mn, (60)Co, (137)Cs, (90)Sr) discharged into the INPP cooling pond - Druksiai Lake were 0.044 microGyh(-1) and 0.004 microGyh(-1), respectively. The internal exposure dose rate due to natural background alpha-emitters ((210)Po,(238)U, (226)Ra) was estimated to be 1.24 microGyh(-1), as compared with that of anthropogenic alpha-emitter (240)Pu - 0.04 microGyh(-1), whereas the external exposure was 0.069 microGyh(-1). The presented data deeper the knowledge about the concentration of radionuclides and submerged hydrophytes' exposure dose rates in European freshwater ecosystems.
Asunto(s)
Chlorophyta/metabolismo , Magnoliopsida/metabolismo , Radioisótopos/metabolismo , Contaminantes Radiactivos del Agua/metabolismo , Agua Dulce , Lituania , Monitoreo de RadiaciónRESUMEN
Laboratory tests were conducted on higher plants [garden cress (Lepidium sativum), great duckweed (Spirodela polyrrhiza), and Tradescantia clone BNL 02] and fish [rainbow trout (Oncorhynchus mykiss) at all stages of development: eggs, larvae and adults] to estimate their sensitivity to heavy fuel oil (HFO). A number of biological indices (survival, growth, and physiological and morphological parameters) as well as the genotoxic impact (Tradescantia) of HFO was evaluated by acute and chronic toxicity tests. Fish were found to be more sensitive to the toxic effect of HFO than were higher plants. EC(50) values obtained for higher plants ranged from 8.7 g/L (L. sativum) to 19.8 g/L (Tradescantia), and maximum-acceptable-toxicant concentration (MATC) values ranged from 0.1 to 1.0 g/L of total HFO for L. sativum and Tradescantia, respectively. The 96-h LC(50) values ranged from 0.33 g/L, for larvae, to 2.97 g/L, for adult fish, and the MATC value for fish was found to be equal to 0.0042 g/L of total HFO. To evaluate and predict the ecological risk of the overall effects of oil spills, studies should be performed using a set of acute and chronic bioassays that include test species of different phylogenetic levels with the most sensitive morphological, physiological, and genotoxic indices.