RESUMEN
The protein encoded by COQ7 is required for CoQ10 synthesis in humans, hydroxylating 3-demethoxyubiquinol (DMQ10) in the second to last steps of the pathway. COQ7 mutations lead to a primary CoQ10 deficiency syndrome associated with a pleiotropic neurological disorder. This study shows the clinical, physiological, and molecular characterization of four new cases of CoQ10 primary deficiency caused by five mutations in COQ7, three of which have not yet been described, inducing mitochondrial dysfunction in all patients. However, the specific combination of the identified variants in each patient generated precise pathophysiological and molecular alterations in fibroblasts, which would explain the differential in vitro response to supplementation therapy. Our results suggest that COQ7 dysfunction could be caused by specific structural changes that affect the interaction with COQ9 required for the DMQ10 presentation to COQ7, the substrate access to the active site, and the maintenance of the active site structure. Remarkably, patients' fibroblasts share transcriptional remodeling, supporting a modification of energy metabolism towards glycolysis, which could be an adaptive mechanism against CoQ10 deficiency. However, transcriptional analysis of mitochondria-associated pathways showed distinct and dramatic differences between patient fibroblasts, which correlated with the extent of pathophysiological and neurological alterations observed in the probands. Overall, this study suggests that the combination of precise genetic diagnostics and the availability of new structural models of human proteins could help explain the origin of phenotypic pleiotropy observed in some genetic diseases and the different responses to available therapies.
RESUMEN
Cerebellar atrophy (CA) is a frequent neuroimaging finding in paediatric neurology, usually associated with cerebellar ataxia. The list of genes involved in hereditary forms of CA is continuously growing and reveals its genetic complexity. We investigated ten cases with early-onset cerebellar involvement with and without ataxia by exome sequencing or by a targeted panel with 363 genes involved in ataxia or spastic paraplegia. Novel variants were investigated by in silico or experimental approaches. Seven probands carry causative variants in well-known genes associated with CA or cerebellar hypoplasia: SETX, CACNA1G, CACNA1A, CLN6, CPLANE1, and TBCD. The remaining three cases deserve special attention; they harbour variants in MAST1, PI4KA and CLK2 genes. MAST1 is responsible for an ultrarare condition characterised by global developmental delay and cognitive decline; our index case added ataxia to the list of concomitant associated symptoms. PIK4A is mainly related to hypomyelinating leukodystrophy; our proband presented with pure spastic paraplegia and normal intellectual capacity. Finally, in a patient who suffers from mild ataxia with oculomotor apraxia, the de novo novel CLK2 c.1120T>C variant was found. The protein expression of the mutated protein was reduced, which may indicate instability that would affect its kinase activity.
Asunto(s)
Ataxia Cerebelosa , Enfermedades Cerebelosas , Enfermedades Neurodegenerativas , Paraplejía Espástica Hereditaria , Niño , Humanos , Heterogeneidad Genética , Mutación , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/diagnóstico , Ataxia , Fenotipo , Paraplejía Espástica Hereditaria/genética , Paraplejía , Linaje , Atrofia , Proteínas Asociadas a Microtúbulos/genética , Proteínas de la Membrana/genéticaRESUMEN
N-type voltage-gated calcium channel controls the release of neurotransmitters from neurons. The association of other voltage-gated calcium channels with epilepsy is well-known. The association of N-type voltage-gated calcium channels and pain has also been established. However, the relationship between this type of calcium channel and epilepsy has not been specifically reviewed. Therefore, the present review systematically summarizes existing publications regarding the genetic associations between N-type voltage-dependent calcium channel and epilepsy.
Asunto(s)
Canales de Calcio Tipo N , Epilepsia , Síndromes Epilépticos , Humanos , Calcio/metabolismo , Epilepsia/genética , Neuronas/metabolismoRESUMEN
Mutations in SCN2A genes have been described in patients with epilepsy, finding a large phenotypic variability, from benign familial epilepsy to epileptic encephalopathy. To explain this variability, it was proposed the existence of dominant modifier alleles at one or more loci that contribute to determine the severity of the epilepsy phenotype. One example of modifier factor may be the CACNA1G gene, as proved in animal models. We present a 6-day-old male newborn with recurrent seizures in which a mutation in the SCN2A gene is observed, in addition to a variant in CACNA1G gene. Our patient suffered in the first days of life myoclonic seizures, with pathologic intercritical electroencephalogram pattern, requiring multiple drugs to achieve adequate control of them. During the next weeks, the patient progressively improved until complete remission at the second month of life, being possible to withdraw the antiepileptic treatment. We propose that the variant in CACNA1G gene could have acted as a modifier of the epilepsy syndrome produced by the mutation in SCN2A gene in our patient.
RESUMEN
BACKGROUND: Expand the knowledge about the clinical phenotypes associated with pathogenic or likely pathogenic variants in the SCN1A gene. METHODS: The study was carried out in 15 patients with SCN1A variants. The complete phenotype of the patients was evaluated. A systematic search was carried out in the scientific literature for those unexpected symptoms. RESULTS: Ten patients showed a missense variant, whereas the remaining showed different loss-of-function variants. Twelve (80%) had Dravet syndrome. Two (13.3%) had Epilepsy with febrile seizures plus. Three (20%) presented an atypical phenotype. One of them was developmental and epileptic encephalopathy with arthrogryposis, the other Dravet syndrome and movement disorder, and lastly one patient had Dravet syndrome and malformations of the cortical development. CONCLUSION: The exhaustive assessment of patients with pathogenic alterations detected in massive sequencing can help us to expand the phenotype, understand the etiopathogenesis associated with each genetic abnormality, and thus improve the prognosis and management of future patients.
Asunto(s)
Artrogriposis , Epilepsias Mioclónicas , Malformaciones del Desarrollo Cortical , Trastornos del Movimiento , Espasmos Infantiles , Artrogriposis/genética , Epilepsias Mioclónicas/genética , Síndromes Epilépticos , Humanos , Trastornos del Movimiento/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , FenotipoRESUMEN
IMMT gene codes for mitofilin, a mitochondrial inner membrane protein that regulates the morphology of mitochondrial cristae. The phenotype associated with mutations in this gene has not been yet established, but functional studies carried out show that its loss causes a mitochondrial alteration, both in the morphology of the mitochondrial crests and in their function. We present two cousins from an extended highly consanguineous family with developmental encephalopathy, hypotonia, nystagmus due to optic neuropathy. The likely pathogenic homozygous c.895A>G (p.Lys299Glu) variant in the IMMT gene co-segregates with the disease and associates altered mitochondrial cristae observed by electron microscopy.
Asunto(s)
Homocigoto , Encefalomiopatías Mitocondriales/diagnóstico , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales , Proteínas Musculares , Mutación , Enfermedades del Nervio Óptico/diagnóstico , Enfermedades del Nervio Óptico/genética , Alelos , Sustitución de Aminoácidos , Biopsia , Consanguinidad , Diagnóstico por Imagen , Predisposición Genética a la Enfermedad , Humanos , Lactante , Fenotipo , Evaluación de SíntomasRESUMEN
Mutations in SPTAN1 gene, encoding the nonerythrocyte αII-spectrin, are responsible for a severe developmental and epileptic encephalopathy (DEE5) and a wide spectrum of neurodevelopmental disorders, as epilepsy with or without intellectual disability (ID) or ID with cerebellar syndrome. A certain genotype-phenotype correlation has been proposed according to the type and location of the mutation. Herein, we report three novel cases with de novo SPTAN1 mutations, one of them associated to a mild phenotype not previously described. They range from (1) severe developmental encephalopathy with ataxia and a mild cerebellar atrophy, without epilepsy; (2) moderate intellectual disability, severe language delay, ataxia and tremor; (3) normal intelligence, chronic migraine, and generalized tonic-clonic seizures. Remarkably, all these patients showed brain MRI abnormalities, being of special interest the subependymal heterotopias detected in the latter patient. Thus we extend the SPTAN1-related phenotypic spectrum, both in its radiological and clinical involvement. Furthermore, after systematic analysis of all the patients so far reported, we noted an excess of male versus female patients (20:9, p = 0.04), more pronounced among the milder phenotypes. Consequently, some protection factor might be suspected among female carriers, which if confirmed should be considered when establishing the pathogenicity of milder genetic variants in this gene.
Asunto(s)
Encefalopatías , Epilepsia , Discapacidad Intelectual , Trastornos Migrañosos , Encefalopatías/genética , Epilepsia/diagnóstico , Epilepsia/genética , Femenino , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Masculino , Mutación , FenotipoRESUMEN
Dominant pathogenic variations in the SCN1A gene are associated with several neuro developmental disorders with or without epilepsy, including Dravet syndrome (DS). Conversely, there are few published cases with homozygous or compound heterozygous variations in the SCN1A gene. Here, we describe two siblings from a consanguineous pedigree with epilepsy phenotype compatible with genetic epilepsy with febrile seizures plus (GEFS+) associated with the homozygous likely pathogenic variant (NM_001165963.1): c.4513A > C (p.Lys1505Gln). Clinical and genetic data were compared to those of other 10 previously published patients with epilepsy and variants in compound heterozygosity or homozygosity in the SCN1A gene. Most patients (11/12) had missense variants. Patients in whom the variants were located at the cytoplasmic or the extracellular domains frequently presented a less severe phenotype than those in whom they are located at the pore-forming domains. Five of the patients (41.7%) meet clinical criteria for Dravet syndrome (DS), one of them associated acute encephalopathy. Other five patients (41.7%) had a phenotype of epilepsy with febrile seizures plus familial origin, while the two remaining (17%) presented focal epileptic seizures. SCN1A-related epilepsies present in most cases an autosomal dominant inheritance; however, there is growing evidence that some genetic variants only manifest clinical symptoms when they are present in both alleles, following an autosomal recessive inheritance.
RESUMEN
Paroxysmal dyskinesias (PxD) are rare movement disorders with characteristic episodes of involuntary mixed hyperkinetic movements. Scientific efforts and technical advances in molecular genetics have led to the discovery of a variety of genes associated with PxD; however, clinical and genetic information of rarely affected genes or infrequent variants is often limited. In our case series, we present two individuals with PxD including one with classical paroxysmal kinesigenic dyskinesia, who carry new likely pathogenic de novo variants in KCNA1 (p.Gly396Val and p.Gly396Arg). The gene has only recently been discovered to be causative for familial paroxysmal kinesigenic dyskinesia. We also provide genetic evidence for pathogenicity of two newly identified disease-causing variants in SLC2A1 (p.Met96Thr and p.Leu231Pro) leading to paroxysmal exercise-induced dyskinesia. Since clinical information of carriers of variants in known disease-causing genes is often scarce, we encourage to share clinical data of individuals with rare or novel (likely) pathogenic variants to improve disease understanding.
Asunto(s)
Bevacizumab/farmacología , Calcinosis/diagnóstico por imagen , Calcinosis/tratamiento farmacológico , Quistes del Sistema Nervioso Central/diagnóstico por imagen , Quistes del Sistema Nervioso Central/tratamiento farmacológico , Factores Inmunológicos/farmacología , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/tratamiento farmacológico , Bevacizumab/administración & dosificación , Humanos , Factores Inmunológicos/administración & dosificación , Lactante , Imagen por Resonancia Magnética , Masculino , ARN Nucleolar PequeñoRESUMEN
INTRODUCTION: The infection due to cytomegalovirus is the most common congenital infection in developed countries, and on of the main causes of psychomotor impairment and neurosensory hearing loss of infectious origin. The present study has its objectives to describe the clinical-analytical and neuroimaging of patients with secondary neurological sequelae secondary to the congenital cytomegalovirus infection and then compare them with the group of patients with a congenital cytomegalovirus infection that did not have neurological symptoms during their follow-up. MATERIAL AND METHODS: A retrospective, observational, cohort study was conducted that included all the cases of congenital cytomegalovirus infection from 2003 until 2018 and the short-medium term neurological sequelae were evaluated. Prenatal, perinatal, and postnatal data of patients with neurological sequelae were compared against those that did not present with any. RESULTS: A total of 60 patients with congenital cytomegalovirus infection were recorded during the study period, with 65% having neurological involvement during their follow-up period (62.2% with psychomotor impairment, 61.5% with microcephaly, 46.2% loss of hearing, 27.8% motor disorders, 20.5% epilepsy, and 5.6% with chorioretinitis). In the patient group that had sequelae, the presence of clinical symptoms during the neonatal period, as well as changes in the neuroimaging study, were the most common, with both being statistically significant compared to the asymptomatic group. The patients with neurological involvement also had a higher score on the Noyola et al. neuroimaging scale. CONCLUSIONS: The symptoms at birth, and certain findings in the neuroimaging, like the changes in the white matter or neuronal migration disorders, could predict neurocognitive sequelae in patients with congenital cytomegalovirus infection.