RESUMEN
We present an ab-initio study performed in the framework of density functional theory, group-subgroup symmetry analysis and lattice dynamics, to probe the octahedral distortions, which occur during the structural phase transitions of the quasi-2D layered perovskite Sr3Hf2O7 compound. Such a system is characterized by a high-temperature I4/mmm centrosymmetric structure and a ground-state Cmc21 ferroelectric phase. We have probed potential candidate polymorphs that may form the I4/mmm â Cmc21 transition pathways, namely Fmm2, Ccce, Cmca and Cmcm. We found that the band gap widths increase as the symmetry decreases, with the ground-state structure presenting the largest gap width (â¼5.95 eV). By probing the Partial Density of States, we observe a direct relation regarding the tilts and rotations of the oxygen perovskite cages as the transition occurs; these show large variations mostly of the O p-states which contribute mostly to the valence band maximum. Moreover, by analyzing the hyperfine parameters, namely the Electric Field Gradients and asymmetric parameters, we observe variations as the transition occurs, from which it is possible to identify the most plausible intermediate phases. We have also computed the macroscopic polarization and confirm that the Cmc21 phase is ferroelectric with a value of spontaneous polarization of 0.0478 C/m2. The ferroelectricity of the ground-state Cmc21 system arises due to a second order parameter related to the coupling of the rotation and tilts of the O perovskite cages together with the Sr displacements.
RESUMEN
When a continuum is subjected to an induced stress, the equations that govern seismic wave propagation are modified in two ways. First, the equation of conservation of linear momentum gains terms related to the induced deviatoric stress, and, second, the elastic constitutive relationship acquires terms linear in the induced stress. This continuum mechanics theory makes testable predictions with regard to stress-induced changes in the elastic tensor. Specifically, it predicts that induced compression linearly affects the prestressed moduli with a slope determined by their local adiabatic pressure derivatives and that induced deviatoric stress produces anisotropic compressional and shear wave speeds. In this article we successfully compare such predictions against ab initio mineral physics calculations for NaCl and MgO.