Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 132(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35239513

RESUMEN

The respiratory tract surface is protected from inhaled pathogens by a secreted layer of mucus rich in mucin glycoproteins. Abnormal mucus accumulation is a cardinal feature of chronic respiratory diseases, but the relationship between mucus and pathogens during exacerbations is poorly understood. We identified elevations in airway mucin 5AC (MUC5AC) and MUC5B concentrations during spontaneous and experimentally induced chronic obstructive pulmonary disease (COPD) exacerbations. MUC5AC was more sensitive to changes in expression during exacerbation and was therefore more predictably associated with viral load, inflammation, symptom severity, decrements in lung function, and secondary bacterial infections. MUC5AC was functionally related to inflammation, as Muc5ac-deficient (Muc5ac-/-) mice had attenuated RV-induced (RV-induced) airway inflammation, and exogenous MUC5AC glycoprotein administration augmented inflammatory responses and increased the release of extracellular adenosine triphosphate (ATP) in mice and human airway epithelial cell cultures. Hydrolysis of ATP suppressed MUC5AC augmentation of RV-induced inflammation in mice. Therapeutic suppression of mucin production using an EGFR antagonist ameliorated immunopathology in a mouse COPD exacerbation model. The coordinated virus induction of MUC5AC and MUC5B expression suggests that non-Th2 mechanisms trigger mucin hypersecretion during exacerbations. Our data identified a proinflammatory role for MUC5AC during viral infection and suggest that MUC5AC inhibition may ameliorate COPD exacerbations.


Asunto(s)
Mucina 5AC , Enfermedad Pulmonar Obstructiva Crónica , Adenosina Trifosfato/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Inflamación/metabolismo , Ratones , Mucina 5AC/genética , Mucina 5AC/metabolismo , Mucina 5B/genética , Mucina 5B/metabolismo , Moco/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/virología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología
2.
Adv Drug Deliv Rev ; 178: 113845, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34166760

RESUMEN

One of the main challenges in the field of drug delivery remains the development of strategies to efficiently transport pharmaceuticals across mucus barriers, which regulate the passage and retention of molecules and particles in all luminal spaces of the body. A thorough understanding of the molecular mechanisms, which govern such selective permeability, is key for achieving efficient translocation of drugs and drug carriers. For this purpose, model systems based on purified mucins can contribute valuable information. In this review, we summarize advances that were made in the field of drug delivery research with such mucin-based model systems: First, we give an overview of mucin purification procedures and discuss the suitability of model systems reconstituted from purified mucins to mimic native mucus. Then, we summarize techniques to study mucin binding. Finally, we highlight approaches that made use of mucins as building blocks for drug delivery platforms or employ mucins as active compounds.


Asunto(s)
Sistemas de Liberación de Medicamentos , Mucinas/aislamiento & purificación , Animales , Humanos , Mucinas/química
3.
Biomacromolecules ; 22(4): 1600-1613, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33749252

RESUMEN

Commercial mucin glycoproteins are routinely used as a model to investigate the broad range of important functions mucins fulfill in our bodies, including lubrication, protection against hostile germs, and the accommodation of a healthy microbiome. Moreover, purified mucins are increasingly selected as building blocks for multifunctional materials, i.e., as components of hydrogels or coatings. By performing a detailed side-by-side comparison of commercially available and lab-purified variants of porcine gastric mucins, we decipher key molecular motifs that are crucial for mucin functionality. As two main structural features, we identify the hydrophobic termini and the hydrophilic glycosylation pattern of the mucin glycoprotein; moreover, we describe how alterations in those structural motifs affect the different properties of mucins-on both microscopic and macroscopic levels. This study provides a detailed understanding of how distinct functionalities of gastric mucins are established, and it highlights the need for high-quality mucins-for both basic research and the development of mucin-based medical products.


Asunto(s)
Glicoproteínas , Mucinas , Animales , Glicoproteínas/metabolismo , Glicosilación , Hidrogeles , Lubrificación , Mucinas/metabolismo , Porcinos
4.
Biophys Rev (Melville) ; 2(3): 031302, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38505633

RESUMEN

A decade ago, environmental issues, such as air pollution and the contamination of the oceans with microplastic, were prominently communicated in the media. However, these days, political topics, as well as the ongoing COVID-19 pandemic, have clearly taken over. In spite of this shift in focus regarding media representation, researchers have made progress in evaluating the possible health risks associated with particulate contaminations present in water and air. In this review article, we summarize recent efforts that establish a clear link between the increasing occurrence of certain pathological conditions and the exposure of humans (or animals) to airborne or waterborne particulate matter. First, we give an overview of the physiological functions mucus has to fulfill in humans and animals, and we discuss different sources of particulate matter. We then highlight parameters that govern particle toxicity and summarize our current knowledge of how an exposure to particulate matter can be related to dysfunctions of mucosal systems. Last, we outline how biophysical tools and methods can help researchers to obtain a better understanding of how particulate matter may affect human health. As we discuss here, recent research has made it quite clear that the structure and functions of those mucosal systems are sensitive toward particulate contaminations. Yet, our mechanistic understanding of how (and which) nano- and microparticles can compromise human health via interacting with mucosal barriers is far from complete.

5.
Langmuir ; 36(43): 12973-12982, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33090801

RESUMEN

Mucin glycoproteins are the matrix-forming key components of mucus, the innate protective barrier protecting us from pathogenic attack. However, this barrier is constantly challenged by mucin-degrading enzymes, which tend to target anionic glycan chains such as sulfate groups and sialic acid residues. Here, we demonstrate that the efficiency of both unspecific and specific binding of small molecules to mucins is reduced when sulfate groups are enzymatically removed from mucins; this is unexpected because neither of the specific mucin-binding partners tested here targets these sulfate motifs on the mucin glycoprotein. Based on simulation results obtained from a numerical model of the mucin macromolecule, we propose that anionic motifs along the mucin chain establish intramolecular repulsion forces which maintain an elongated mucin conformation. In the absence of these repulsive forces, the mucin seems to adopt a more compacted structure, in which the accessibility of several binding sites is restricted. Our results contribute to a better understanding on how different glycans contribute to the broad spectrum of functions mucin glycoproteins have.

6.
Macromol Biosci ; 20(7): e2000090, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32431054

RESUMEN

Mucin glycoproteins, the macromolecular components of mucus, combine a broad range of biomedically important properties. Among those is the ability of mucin solutions to act as excellent lubricants. However, to be able to use purified, endogenous mucin glycoproteins as components of a biomedical product, the mucins need to be sterile; this, in turn, makes it necessary to subject the mucins to quite harsh physical treatments, such as heat exposure, autoclaving, UV-, or γ-irradiation, which might compromise the functionality of the glycoproteins. Here, it is shown that mucins are indeed able to withstand most of those treatments without suffering significant lubrication impairment or structural degradation. Among those treatments, which left the mucins unharmed, γ-irradiation is identified to be the most powerful one in terms of inactivating microbial contaminations. The obtained results demonstrate a remarkable sturdiness of mucins, which opens up broad possibilities for them to be further processed into materials, e.g., as parts of biomedical products.


Asunto(s)
Mucinas/química , Esterilización , Adsorción , Animales , Anticuerpos/metabolismo , Recuento de Colonia Microbiana , Lubrificación , Peso Molecular , Porcinos
7.
Colloids Surf B Biointerfaces ; 187: 110614, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31753616

RESUMEN

In the human body, mucin glycoproteins efficiently reduce friction between tissues and thereby protect the mucosa from mechanical damage. Mucin lubricity is closely related to their molecular structure: it has been demonstrated previously that the hydrophobic termini of mucins critically contribute to their lubricity. If and how intrinsic sources of negative charge in mucins, e.g., sulfated glycans and sialic acid residues, are relevant for the tribological behavior of mucin solutions has, however, not been addressed yet. In this manuscript, we show that the removal of either sialic acid or sulfate groups, which comprise only a minor amount of the total molecular weight, from MUC5B drastically reduces its lubricity. For MUC5AC solutions, however, this effect only occurs once mucin-associated DNA is removed as well. We find that neither the hydration state nor the average conformation of mucins adsorbed onto hydrophilic or hydrophobic surfaces is affected by the removal of anionic sugars. Instead, our data suggests that a loss of anionic sugars mainly influences the dynamic adsorption process of mucins onto both hydrophilic and hydrophobic surfaces.


Asunto(s)
Lubrificación , Mucinas/química , Polisacáridos/química , Adsorción , Animales , Aniones , Grafito/química , Interacciones Hidrofóbicas e Hidrofílicas , Ácido N-Acetilneuramínico/química , Conformación Proteica , Soluciones , Sulfatos/química , Porcinos , Agua/química
8.
Biomacromolecules ; 20(12): 4332-4344, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31721560

RESUMEN

Recent research indicates that the progression of Parkinson's disease can start from neurons of the enteric nervous system, which are in close contact with the gastrointestinal epithelium: α-synuclein molecules can be transferred from these epithelial cells in a prion-like fashion to enteric neurons. Thin mucus layers constitute a defense line against the exposure of noninfected cells to potentially harmful α-synuclein species. We show that-despite its mucoadhesive properties-α-synuclein can translocate across mucin hydrogels, and this process is accompanied by structural rearrangements of the mucin molecules within the gel. Penetration experiments with different α-synuclein variants and synthetic peptides suggest that two binding sites on α-synuclein are required to accomplish this rearrangement of the mucin matrix. Our results support the notion that the translocation of α-synuclein across mucus barriers observed here might be a critical step in the infection of the gastrointestinal epithelium and the development of Parkinson's disease.


Asunto(s)
Hidrogeles/química , Mucina 5AC/química , alfa-Sinucleína/química , Animales , Bovinos , Mucosa Gástrica/química , Mucosa Gástrica/metabolismo , Humanos , Mucosa Intestinal/química , Mucosa Intestinal/metabolismo , Mucina 5AC/metabolismo , Enfermedad de Parkinson/metabolismo , Porcinos , alfa-Sinucleína/metabolismo
9.
Biomater Sci ; 6(12): 3373-3387, 2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30362469

RESUMEN

Here, we present a microfluidics chip platform which allows for studying the charge-dependent transport of molecules across the interface of acidic mucin gels. With this setup, we demonstrate a selective accumulation of molecules at the liquid/gel interface of mucin hydrogels that occurs as a function of the molecule charge: this phenomenon is strongly pronounced for cationic molecules, weakly pronounced for anionic molecules and absent for neutral molecules. We suggest that molecular transport into and across the gel depends on two main factors, i.e. molecule partitioning from the liquid phase into the gel phase and molecule diffusion throughout the gel. Transient binding of charged molecules to the mucin biopolymers enhances the former process whereas it slows down the latter. This model is supported by a theoretical description of this molecular transport process that is based on diffusion-reaction equations. With this model, we predict the efficiency of the diffusive transport of charged objects across self-renewing physiological mucus barriers. Our results challenge the prevailing notion that inert, non-mucoadhesive molecules were always more efficient in penetrating mucin-based hydrogels such as native mucus than charged molecules.


Asunto(s)
Hidrogeles/química , Mucinas/química , Animales , Difusión , Fluoresceína-5-Isotiocianato/química , Mucosa Intestinal/química , Microfluídica , Electricidad Estática , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...