Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 34(17): e2200626, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35231130

RESUMEN

Half metals, in which one spin channel is conducting while the other is insulating with an energy gap, are theoretically considered to comprise 100% spin-polarized conducting electrons, and thus have promising applications in high-efficiency magnetic sensors, computer memory, magnetic recording, and so on. However, for practical applications, a high Curie temperature combined with a wide spin energy gap and large magnetization is required. Realizing such a high-performance combination is a key challenge. Herein, a novel A- and B-site ordered quadruple perovskite oxide LaCu3 Fe2 Re2 O12 with the charge format of Cu2+ /Fe3+ /Re4.5+ is reported. The strong Cu2+ (↑)Fe3+ (↑)Re4.5+ (↓) spin interactions lead to a ferrimagnetic Curie temperature as high as 710 K, which is the reported record in perovskite-type half metals thus far. The saturated magnetic moment determined at 300 K is 7.0 µB f.u.-1 and further increases to 8.0 µB f.u.-1 at 2 K. First-principles calculations reveal a half-metallic nature with a spin-down conducting band while a spin-up insulating band with a large energy gap up to 2.27 eV. The currently unprecedented realization of record Curie temperature coupling with the wide energy gap and large moment in LaCu3 Fe2 Re2 O12 opens a way for potential applications in advanced spintronic devices at/above room temperature.

2.
Nat Commun ; 13(1): 1472, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354812

RESUMEN

Magnetic skyrmions are topologically stable swirling spin textures with particle-like character, and have been intensively studied as a candidate of high-density information bit. While magnetic skyrmions were originally discovered in noncentrosymmetric systems with Dzyaloshinskii-Moriya interaction, recently a nanometric skyrmion lattice has also been reported for centrosymmetric rare-earth compounds, such as Gd2PdSi3 and GdRu2Si2. For the latter systems, a distinct skyrmion formation mechanism mediated by itinerant electrons has been proposed, and the search of a simpler model system allowing for a better understanding of their intricate magnetic phase diagram is highly demanded. Here, we report the discovery of square and rhombic lattices of nanometric skyrmions in a centrosymmetric binary compound EuAl4, by performing small-angle neutron and resonant elastic X-ray scattering experiments. Unlike previously reported centrosymmetric skyrmion-hosting materials, EuAl4 shows multiple-step reorientation of the fundamental magnetic modulation vector as a function of magnetic field, probably reflecting a delicate balance of associated itinerant-electron-mediated interactions. The present results demonstrate that a variety of distinctive skyrmion orders can be derived even in a simple centrosymmetric binary compound, which highlights rare-earth intermetallic systems as a promising platform to realize/control the competition of multiple topological magnetic phases in a single material.

3.
Phys Rev Lett ; 127(9): 097203, 2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34506205

RESUMEN

Since the discovery of charge disproportionation in the FeO_{2} square-lattice compound Sr_{3}Fe_{2}O_{7} by Mössbauer spectroscopy more than fifty years ago, the spatial ordering pattern of the disproportionated charges has remained "hidden" to conventional diffraction probes, despite numerous x-ray and neutron scattering studies. We have used neutron Larmor diffraction and Fe K-edge resonant x-ray scattering to demonstrate checkerboard charge order in the FeO_{2} planes that vanishes at a sharp second-order phase transition upon heating above 332 K. Stacking disorder of the checkerboard pattern due to frustrated interlayer interactions broadens the corresponding superstructure reflections and greatly reduces their amplitude, thus explaining the difficulty of detecting them by conventional probes. We discuss the implications of these findings for research on "hidden order" in other materials.

4.
ACS Appl Mater Interfaces ; 12(7): 8780-8787, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31877013

RESUMEN

Hybrid semiconductor-ferromagnetic insulator heterostructures are interesting due to their tunable electronic transport, self-sustained stray field, and local proximitized magnetic exchange. In this work, we present lattice-matched hybrid epitaxy of semiconductor-ferromagnetic insulator InAs/EuS heterostructures and analyze the atomic-scale structure and their electronic and magnetic characteristics. The Fermi level at the InAs/EuS interface is found to be close to the InAs conduction band and in the band gap of EuS, thus preserving the semiconducting properties. Both neutron and X-ray reflectivity measurements show that the overall ferromagnetic component is mainly localized in the EuS thin film with a suppression of the Eu moment in the EuS layer nearest the InAs and magnetic moments outside the detection limits on the pure InAs side. This work presents a step toward realizing defect-free semiconductor-ferromagnetic insulator epitaxial hybrids for spin-lifted quantum and spintronic applications without external magnetic fields.

5.
Nat Commun ; 9(1): 2850, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-30030427

RESUMEN

Two-dimensional magnetic systems with continuous spin degrees of freedom exhibit a rich spectrum of thermal behaviour due to the strong competition between fluctuations and correlations. When such systems incorporate coupling via the anisotropic dipolar interaction, a discrete symmetry emerges, which can be spontaneously broken leading to a low-temperature ordered phase. However, the experimental realisation of such two-dimensional spin systems in crystalline materials is difficult since the dipolar coupling is usually much weaker than the exchange interaction. Here we realise two-dimensional magnetostatically coupled XY spin systems with nanoscale thermally active magnetic discs placed on square lattices. Using low-energy muon-spin relaxation and soft X-ray scattering, we observe correlated dynamics at the critical temperature and the emergence of static long-range order at low temperatures, which is compatible with theoretical predictions for dipolar-coupled XY spin systems. Furthermore, by modifying the sample design, we demonstrate the possibility to tune the collective magnetic behaviour in thermally active artificial spin systems with continuous degrees of freedom.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...