Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
3.
Infect Dis Model ; 9(2): 501-518, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38445252

RESUMEN

In July 2023, the Center of Excellence in Respiratory Pathogens organized a two-day workshop on infectious diseases modelling and the lessons learnt from the Covid-19 pandemic. This report summarizes the rich discussions that occurred during the workshop. The workshop participants discussed multisource data integration and highlighted the benefits of combining traditional surveillance with more novel data sources like mobility data, social media, and wastewater monitoring. Significant advancements were noted in the development of predictive models, with examples from various countries showcasing the use of machine learning and artificial intelligence in detecting and monitoring disease trends. The role of open collaboration between various stakeholders in modelling was stressed, advocating for the continuation of such partnerships beyond the pandemic. A major gap identified was the absence of a common international framework for data sharing, which is crucial for global pandemic preparedness. Overall, the workshop underscored the need for robust, adaptable modelling frameworks and the integration of different data sources and collaboration across sectors, as key elements in enhancing future pandemic response and preparedness.

4.
Antiviral Res ; 217: 105699, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37549849

RESUMEN

Epstein-Barr virus (EBV) is a highly prevalent human herpesvirus that persists for life in more than 95% of the adult population. EBV usually establishes an asymptomatic life-long infection, but it is also associated with malignancies affecting B lymphocytes and epithelial cells mainly. The virus alternates between a latent phase and a lytic phase, both of which contribute to the initiation of the tumor process. So far, there is only a limited number of antiviral molecules against the lytic phase, most of them targeting viral replication. Recent studies provided evidence that EBV uses components of the NLRP3 inflammasome to enter the productive phase of its cycle following activation in response to various stimuli. In the present work, we demonstrate that shikonin, a natural molecule with low toxicity which is known to inhibit inflammasome, can efficiently repress EBV reactivation. Similar results were obtained with apigenin and OLT 1177, two other NLRP3 inflammasome inhibitors. It is shown herein that shikonin repressed the transcription of reactivation-induced NLRP3 thereby inhibiting inflammasome activation and EBV lytic phase induction.


Asunto(s)
Antiinflamatorios no Esteroideos , Herpesvirus Humano 4 , Inflamasomas , Naftoquinonas , Activación Viral , Inflamasomas/antagonistas & inhibidores , Activación Viral/efectos de los fármacos , Herpesvirus Humano 4/efectos de los fármacos , Naftoquinonas/farmacología , Apigenina/farmacología , Antiinflamatorios no Esteroideos/farmacología , Humanos , Línea Celular , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Línea Celular Tumoral
6.
Viruses ; 14(8)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36016399

RESUMEN

OBJECTIVE: There is extensive evidence that SARS-CoV-2 replicates in the gastrointestinal tract. However, the infectivity of virions in feces is poorly documented. Although the primary mode of transmission is airborne, the risk of transmission from contaminated feces remains to be assessed. DESIGN: The persistence of SARS-CoV-2 (infectivity and RNA) in human and animal feces was evaluated by virus isolation on cell culture and RT-qPCR, respectively. The exposure of golden Syrian hamsters to experimentally contaminated feces through intranasal inoculation has also been tested to assess the fecal-oral transmission route. RESULTS: For periods that are compatible with average intestinal transit, the SARS-CoV-2 genome was noticeably stable in human and animal feces, contrary to the virus infectivity that was reduced in a time- and temperature-dependent manner. In human stools, this reduction was variable depending on the donors. Viral RNA was excreted in the feces of infected hamsters, but exposure of naïve hamsters to feces of infected animals did not lead to any productive infection. Conversely, hamsters could be experimentally infected following exposure to spiked fresh feces. CONCLUSION: Infection following exposure to naturally contaminated feces has been suspected but has not been established so far. The present work demonstrates that SARS-CoV-2 rapidly lost infectivity in spiked or naturally infected feces. Although the possibility of persistent viral particles in human or animal feces cannot be fully ruled out, SARS-CoV-2 transmission after exposure to contaminated feces is unlikely.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Heces , Humanos , Mesocricetus , ARN Viral
7.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35887213

RESUMEN

Energy metabolism reprogramming was recently listed as a hallmark of cancer. In this process, the switch from pyruvate kinase isoenzyme type M1 to pyruvate kinase isoenzyme type M2 (PKM2) is believed to play a crucial role. Interestingly, the activity of the active form of PKM2 can efficiently be inhibited by the high-mobility group box 1 (HMGB1) protein, leading to a rapid blockage of glucose-dependent aerobic respiration and cancer cell death. HMGB1 is a member of the HMG protein family. It contains two DNA-binding HMG-box domains and an acidic C-terminal tail capable of positively or negatively modulating its biological properties. In this work, we report that the deletion of the C-terminal tail of HMGB1 increases its activity towards a large panel of cancer cells without affecting the viability of normal immortalized fibroblasts. Moreover, in silico analysis suggests that the truncated form of HMGB1 retains the capacity of the full-length protein to interact with PKM2. However, based on the capacity of the cells to circumvent oxidative phosphorylation inhibition, we were able to identify either a cytotoxic or cytostatic effect of the proteins. Together, our study provides new insights in the characterization of the anticancer activity of HMGB1.


Asunto(s)
Proteína HMGB1 , Dominios HMG-Box , Proteína HMGB1/metabolismo , Isoenzimas/metabolismo , Estructura Terciaria de Proteína , Piruvato Quinasa/metabolismo
8.
PLoS Pathog ; 18(3): e1010371, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35275978

RESUMEN

Innate immunity constitutes the first line of defense against viruses, in which mitochondria play an important role in the induction of the interferon (IFN) response. BHRF1, a multifunctional viral protein expressed during Epstein-Barr virus reactivation, modulates mitochondrial dynamics and disrupts the IFN signaling pathway. Mitochondria are mobile organelles that move through the cytoplasm thanks to the cytoskeleton and in particular the microtubule (MT) network. MTs undergo various post-translational modifications, among them tubulin acetylation. In this study, we demonstrated that BHRF1 induces MT hyperacetylation to escape innate immunity. Indeed, the expression of BHRF1 induces the clustering of shortened mitochondria next to the nucleus. This "mito-aggresome" is organized around the centrosome and its formation is MT-dependent. We also observed that the α-tubulin acetyltransferase ATAT1 interacts with BHRF1. Using ATAT1 knockdown or a non-acetylatable α-tubulin mutant, we demonstrated that this hyperacetylation is necessary for the mito-aggresome formation. Similar results were observed during EBV reactivation. We investigated the mechanism leading to the clustering of mitochondria, and we identified dyneins as motors that are required for mitochondrial clustering. Finally, we demonstrated that BHRF1 needs MT hyperacetylation to block the induction of the IFN response. Moreover, the loss of MT hyperacetylation blocks the localization of autophagosomes close to the mito-aggresome, impeding BHRF1 to initiate mitophagy, which is essential to inhibiting the signaling pathway. Therefore, our results reveal the role of the MT network, and its acetylation level, in the induction of a pro-viral mitophagy.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Inmunidad Innata , Proteínas Virales , Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/fisiología , Humanos , Microtúbulos/metabolismo , Mitofagia , Tubulina (Proteína)/metabolismo , Proteínas Virales/metabolismo
9.
Clin Epigenetics ; 14(1): 33, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246247

RESUMEN

Epstein-Barr virus DNA viral load is used as a surrogate marker to start Rituximab in transplant recipients at risk of developing PTLD. However, an elevated EBV DNAemia does not discriminate lymphoproliferation and replication. We designed a new molecular assay (methyl-qPCR) to distinguish methylated versus unmethylated viral genomes. In blood, viral genomes were highly methylated in EBV primary infections, PTLD and 4/5 transplant recipients with high viral load. The only patient with under-methylated EBV genomes did not respond to rituximab. Methyl-qPCR is a convenient method to discriminate between latent and lytic EBV genomes and could be useful in treatment decisions.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Trastornos Linfoproliferativos , Metilación de ADN , ADN Viral/genética , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Trastornos Linfoproliferativos/etiología , Trastornos Linfoproliferativos/genética , Rituximab/uso terapéutico
10.
Environ Int ; 158: 106998, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34991258

RESUMEN

Since many infected people experience no or few symptoms, the SARS-CoV-2 epidemic is frequently monitored through massive virus testing of the population, an approach that may be biased and may be difficult to sustain in low-income countries. Since SARS-CoV-2 RNA can be detected in stool samples, quantifying SARS-CoV-2 genome by RT-qPCR in wastewater treatment plants (WWTPs) has been carried out as a complementary tool to monitor virus circulation among human populations. However, measuring SARS-CoV-2 viral load in WWTPs can be affected by many experimental and environmental factors. To circumvent these limits, we propose here a novel indicator, the wastewater indicator (WWI), that partly reduces and corrects the noise associated with the SARS-CoV-2 genome quantification in wastewater (average noise reduction of 19%). All data processing results in an average correlation gain of 18% with the incidence rate. The WWI can take into account the censorship linked to the limit of quantification (LOQ), allows the automatic detection of outliers to be integrated into the smoothing algorithm, estimates the average measurement error committed on the samples and proposes a solution for inter-laboratory normalization in the absence of inter-laboratory assays (ILA). This method has been successfully applied in the context of Obépine, a French national network that has been quantifying SARS-CoV-2 genome in a representative sample of French WWTPs since March 5th 2020. By August 26th, 2021, 168 WWTPs were monitored in the French metropolitan and overseas territories of France. We detail the process of elaboration of this indicator, show that it is strongly correlated to the incidence rate and that the optimal time lag between these two signals is only a few days, making our indicator an efficient complement to the incidence rate. This alternative approach may be especially important to evaluate SARS-CoV-2 dynamics in human populations when the testing rate is low.


Asunto(s)
COVID-19 , Epidemias , Humanos , ARN Viral , SARS-CoV-2 , Aguas Residuales
11.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34768902

RESUMEN

The purine nucleotide adenosine triphosphate (ATP) is known for its fundamental role in cellular bioenergetics. However, in the last decades, different works have described emerging functions for ATP, such as that of a danger signaling molecule acting in the extracellular space on both tumor and stromal compartments. Beside its role in immune cell signaling, several studies have shown that high concentrations of extracellular ATP can directly or indirectly act on cancer cells. Accordingly, it has been reported that purinergic receptors are widely expressed in tumor cells. However, their expression pattern is often associated with contradictory cellular outcomes. In this work, we first investigated gene expression profiles through "RNA-Sequencing" (RNA Seq) technology in four colorectal cancer (CRC) cell lines (HT29, LS513, LS174T, HCT116). Our results demonstrate that CRC cells mostly express the A2B, P2X4, P2Y1, P2Y2 and P2Y11 purinergic receptors. Among these, the P2Y1 and P2Y2 coding genes are markedly overexpressed in all CRC cells compared to the HCEC-1CT normal-like colonic cells. We then explored the cellular outcomes induced by extracellular ATP and adenosine. Our results show that in terms of cell death induction extracellular ATP is consistently more active than adenosine against CRC, while neither compound affected normal-like colonic cell survival. Intriguingly, while for the P2Y2 receptor pharmacological inhibition completely abolished the rise in cytoplasmic Ca2+ observed after ATP exposure in all CRC cell lines, Ca2+ mobilization only impacted the cellular outcome for HT29. In contrast, non-selective phosphodiesterase inhibition completely abolished the effects of extracellular ATP on CRC cells, suggesting that cAMP and/or cGMP levels might determine cellular outcome. Altogether, our study provides novel insights into the characterization of purinergic signaling in CRC.


Asunto(s)
Adenosina Trifosfato/farmacología , Adenosina/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Receptores Purinérgicos/metabolismo , Transcriptoma/efectos de los fármacos , Apoptosis , Biomarcadores de Tumor/genética , Calcio/metabolismo , Señalización del Calcio , Ciclo Celular , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Espacio Extracelular/metabolismo , Humanos , Receptores Purinérgicos/genética , Células Tumorales Cultivadas
12.
Thromb Haemost ; 121(8): 992-1007, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34169495

RESUMEN

BACKGROUND: One year after the declaration of the coronavirus disease 2019 (COVID-19) pandemic by the World Health Organization (WHO) and despite the implementation of mandatory physical barriers and social distancing, humanity remains challenged by a long-lasting and devastating public health crisis. MANAGEMENT: Non-pharmacological interventions (NPIs) are efficient mitigation strategies. The success of these NPIs is dependent on the approval and commitment of the population. The launch of a mass vaccination program in many countries in late December 2020 with mRNA vaccines, adenovirus-based vaccines, and inactivated virus vaccines has generated hope for the end of the pandemic. CURRENT ISSUES: The continuous appearance of new pathogenic viral strains and the ability of vaccines to prevent infection and transmission raise important concerns as we try to achieve community immunity against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and its variants. The need of a second and even third generation of vaccines has already been acknowledged by the WHO and governments. PERSPECTIVES: There is a critical and urgent need for a balanced and integrated strategy for the management of the COVID-19 outbreaks organized on three axes: (1) Prevention of the SARS-CoV-2 infection, (2) Detection and early diagnosis of patients at risk of disease worsening, and (3) Anticipation of medical care (PDA). CONCLUSION: The "PDA strategy" integrated into state policy for the support and expansion of health systems and introduction of digital organizations (i.e., telemedicine, e-Health, artificial intelligence, and machine-learning technology) is of major importance for the preservation of citizens' health and life world-wide.


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , Salud Pública , COVID-19/diagnóstico , Prueba de COVID-19/métodos , Vacunas contra la COVID-19/uso terapéutico , Manejo de la Enfermedad , Humanos , Programas de Inmunización/métodos , Pandemias/prevención & control , Salud Pública/métodos , Medición de Riesgo , SARS-CoV-2/aislamiento & purificación
13.
Molecules ; 26(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946802

RESUMEN

There is an urgent need for specific antiviral treatments directed against SARS-CoV-2 to prevent the most severe forms of COVID-19. By drug repurposing, affordable therapeutics could be supplied worldwide in the present pandemic context. Targeting the nucleoprotein N of the SARS-CoV-2 coronavirus could be a strategy to impede viral replication and possibly other essential functions associated with viral N. The antiviral properties of naproxen, a non-steroidal anti-inflammatory drug (NSAID) that was previously demonstrated to be active against Influenza A virus, were evaluated against SARS-CoV-2. Intrinsic fluorescence spectroscopy, fluorescence anisotropy, and dynamic light scattering assays demonstrated naproxen binding to the nucleoprotein of SARS-Cov-2 as predicted by molecular modeling. Naproxen impeded recombinant N oligomerization and inhibited viral replication in infected cells. In VeroE6 cells and reconstituted human primary respiratory epithelium models of SARS-CoV-2 infection, naproxen specifically inhibited viral replication and protected the bronchial epithelia against SARS-CoV-2-induced damage. No inhibition of viral replication was observed with paracetamol or the COX-2 inhibitor celecoxib. Thus, among the NSAID tested, only naproxen combined antiviral and anti-inflammatory properties. Naproxen addition to the standard of care could be beneficial in a clinical setting, as tested in an ongoing clinical study.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Naproxeno/farmacología , Nucleoproteínas/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Proteínas Virales/antagonistas & inhibidores , Animales , Línea Celular , Chlorocebus aethiops , Reposicionamiento de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Nucleoproteínas/metabolismo , SARS-CoV-2/fisiología , Células Vero , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
16.
Autophagy ; 17(6): 1296-1315, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32401605

RESUMEN

Mitochondria respond to many cellular functions and act as central hubs in innate immunity against viruses. This response is notably due to their role in the activation of interferon (IFN) signaling pathways through the activity of MAVS (mitochondrial antiviral signaling protein) present at the mitochondrial surface. Here, we report that the BHRF1 protein, a BCL2 homolog encoded by Epstein-Barr virus (EBV), inhibits IFNB/IFN-ß induction by targeting the mitochondria. Indeed, we have demonstrated that BHRF1 expression modifies mitochondrial dynamics and stimulates DNM1L/Drp1-mediated mitochondrial fission. Concomitantly, we have shown that BHRF1 is pro-autophagic because it stimulates the autophagic flux by interacting with BECN1/Beclin 1. In response to the BHRF1-induced mitochondrial fission and macroautophagy/autophagy stimulation, BHRF1 drives mitochondrial network reorganization to form juxtanuclear mitochondrial aggregates known as mito-aggresomes. Mitophagy is a cellular process, which can specifically sequester and degrade mitochondria. Our confocal studies uncovered that numerous mitochondria are present in autophagosomes and acidic compartments using BHRF1-expressing cells. Moreover, mito-aggresome formation allows the induction of mitophagy and the accumulation of PINK1 at the mitochondria. As BHRF1 modulates the mitochondrial fate, we explored the effect of BHRF1 on innate immunity and showed that BHRF1 expression could prevent IFNB induction. Indeed, BHRF1 inhibits the IFNB promoter activation and blocks the nuclear translocation of IRF3 (interferon regulatory factor 3). Thus, we concluded that BHRF1 can counteract innate immunity activation by inducing fission of the mitochondria to facilitate their sequestration in mitophagosomes for degradation.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; BCL2: BCL2 apoptosis regulator; CARD: caspase recruitment domain; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CI: compaction index; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole, dihydrochloride; DDX58/RIG-I: DExD/H-box helicase 58; DNM1L/Drp1: dynamin 1 like; EBSS: Earle's balanced salt solution; EBV: Epstein-Barr virus; ER: endoplasmic reticulum; EV: empty vector; GFP: green fluorescent protein; HEK: human embryonic kidney; IFN: interferon; IgG: immunoglobulin G; IRF3: interferon regulatory factor 3; LDHA: lactate dehydrogenase A; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MMP: mitochondrial membrane potential; MOM: mitochondrial outer membrane; PINK1: PTEN induced kinase 1; RFP: red fluorescent protein; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TOMM20: translocase of outer mitochondrial membrane 20; VDAC: voltage dependent anion channel.


Asunto(s)
Autofagia/inmunología , Interferones/metabolismo , Mitocondrias/virología , Dinámicas Mitocondriales/fisiología , Mitofagia/fisiología , Proteínas Virales/metabolismo , Autofagosomas/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Infecciones por Virus de Epstein-Barr/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/metabolismo
17.
Cell Immunol ; 347: 104020, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31767118

RESUMEN

High-mobility group box 1 (HMGB1) concentration in serum or plasma has been proposed as an important biological marker in various inflammation-related pathologies. We previously showed that low titer autoantibodies against HMGB1 could emerge during the course of sepsis. Importantly their presence was positively related with patients' survival. In this study, we focused on plasma samples from 2 patients who survived sepsis and exhibited high titer antibodies to HMGB1. These antibodies were proved to be specific for HMGB1 since they did not bind to HMGB2 or to human serum albumin. Following IgG purification, it has shown that both patients secreted HMGB1-hydrolyzing autoantibodies in vitro. These findings suggested that proteolytic antibodies directed against HMGB1 can be produced in patients surviving septic shock.


Asunto(s)
Autoanticuerpos/inmunología , Proteína HMGB1/inmunología , Choque Séptico/inmunología , Autoanticuerpos/sangre , Proteína HMGB2/inmunología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Proteolisis , Albúmina Sérica Humana/inmunología , Choque Séptico/mortalidad , Choque Séptico/patología
18.
Viruses ; 11(12)2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783609

RESUMEN

Autophagy is an essential catabolic process that degrades cytoplasmic components within the lysosome, therefore ensuring cell survival and homeostasis. A growing number of viruses, including members of the Herpesviridae family, have been shown to manipulate autophagy to facilitate their persistence or optimize their replication. Previous works showed that the Epstein-Barr virus (EBV), a human transforming gammaherpesvirus, hijacked autophagy during the lytic phase of its cycle, possibly to favor the formation of viral particles. However, the viral proteins that are responsible for an EBV-mediated subversion of the autophagy pathways remain to be characterized. Here we provide the first evidence that the BALF0/1 open reading frame encodes for two conserved proteins of the Bcl-2 family, BALF0 and BALF1, that are expressed during the early phase of the lytic cycle and can modulate autophagy. A putative LC3-interacting region (LIR) has been identified that is required both for BALF1 colocalization with autophagosomes and for its ability to stimulate autophagy.


Asunto(s)
Autofagia , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Proteínas Virales/metabolismo , Autofagosomas/metabolismo , Línea Celular Tumoral , Herpesvirus Humano 4/genética , Humanos , Sistemas de Lectura Abierta/genética , Filogenia , Proteínas Virales/genética
19.
Antiviral Res ; 172: 104615, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31580916

RESUMEN

Epstein-Barr virus (EBV) is a widely distributed gamma-herpesvirus that has been associated with various cancers mainly from lymphocytic and epithelial origin. Although EBV-mediated oncogenesis has been associated with viral oncogenes expressed during latency, a growing set of evidence suggested that antiviral treatments directed against EBV lytic phase may contribute to prevent some forms of cancers, including EBV-positive Post-Transplant Lymphoproliferative Diseases. It is shown here that dipyridamole (DIP), a safe drug with favorable and broad pharmacological properties, inhibits EBV reactivation from B-cell lines. DIP repressed immediate early and early genes expression mostly through its ability to inhibit nucleoside uptake. Considering its wide clinical use, DIP repurposing could shortly be evaluated, alone or in combination with other antivirals, to treat EBV-related diseases where lytic replication plays a deleterious role.


Asunto(s)
Dipiridamol/farmacología , Herpesvirus Humano 4/efectos de los fármacos , Activación Viral/efectos de los fármacos , Antivirales/farmacología , Linfocitos B/metabolismo , Linfocitos B/virología , Línea Celular , ADN Viral/efectos de los fármacos , Reposicionamiento de Medicamentos , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Expresión Génica/efectos de los fármacos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Nucleósidos/metabolismo , Latencia del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
20.
Protein Expr Purif ; 162: 44-50, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31145974

RESUMEN

BALF0/1 is a putative Epstein-Barr virus (EBV) protein that has been described as a modulator of apoptosis. So far, the lack of specific immunological reagents impaired the detection of native BALF0/1 in EBV-infected cells. This study describes the expression and purification of a truncated form of BALF0/1 (tBALF0) using a heterologous bacterial expression system. tBALF0 was further used as an antigen in an indirect Enzyme-linked Immunosorbent Assay (ELISA) that unraveled the presence of low titer IgGs to BALF0/1 during primary (10.0%) and past (13.3%) EBV infection. Conversely high-titer IgGs to BALF0/1 were detected in 33.3% of nasopharyngeal carcinoma (NPC) patients suggesting that BALF0/1 and/or humoral response against it may contribute to NPC pathogenesis.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Virus de Epstein-Barr/sangre , Herpesvirus Humano 4/inmunología , Inmunoglobulina G/sangre , Carcinoma Nasofaríngeo/sangre , Proteínas Virales/inmunología , Anticuerpos Antivirales/inmunología , Ensayo de Inmunoadsorción Enzimática , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/genética , Humanos , Inmunidad Humoral , Inmunoglobulina G/inmunología , Carcinoma Nasofaríngeo/virología , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...