Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39176991

RESUMEN

Cellulose nanofibers (CNF) are the most abundant renewable nanoscale fibers on Earth, and their use in the design of hybrid materials is ever more acclaimed, although it has been mostly limited, to date, to CNF derivatives obtained via covalent functionalization. Herein, we propose a noncovalent approach employing a set of short peptides - DFNKF, DF(I)NKF, and DF(F5)NKF - as supramolecular additives to engineer hybrid hydrogels and films based on unfunctionalized CNF. Even at minimal concentrations (from 0.1% to 0.01% w/w), these peptides demonstrate a remarkable ability to enhance CNF rheological properties, increasing both dynamic moduli by more than an order of magnitude. Upon vacuum filtration of the hydrogels, we obtained CNF-peptide films with tailored hydrophobicity and surface wettability, modulated according to the peptide content and halogen type. Notably, the presence of fluorine in the CNF-DF(F5)NKF film, despite being minimal, strongly enhances CNF water vapor barrier properties and reduces the film water uptake. Overall, this approach offers a modular, straightforward method to create fully bio-based CNF-peptide materials, where the inclusion of DFNKF derivatives allows for facile functionalization and material property modulation, opening their potential use in the design of packaging solutions and biomedical devices.

2.
PLoS One ; 19(3): e0298818, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38507426

RESUMEN

Sox2 is known for its roles in maintaining the stem cell state of embryonic stem cells and neural stem cells. In particular, it has been shown to slow the proliferation of these cell types. It is also known for its effects as an activating transcription factor. Despite this, analysis of published studies shows that it represses as many genes as it activates. Here, we identify a new set of target genes that Sox2 represses in neural stem cells. These genes are associated with centrosomes, centromeres and other aspects of cell cycle control. In addition, we show that SUMOylation of Sox2 is necessary for the repression of these genes and for its repressive effects on cell proliferation. Together, these data suggest that SUMO-dependent repression of this group of target genes is responsible for the role of Sox2 in regulating the proliferation of neural stem cells.


Asunto(s)
Células-Madre Neurales , Células-Madre Neurales/metabolismo , Transcripción Genética , Células Madre Embrionarias , Regulación del Desarrollo de la Expresión Génica , Proliferación Celular , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Diferenciación Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...