Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 19(10): 1987-2000, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36847796

RESUMEN

We study the phase behaviour of cholesteric liquid crystal shells with different geometries. We compare the cases of tangential anchoring and no anchoring at the surface, focussing on the former case, which leads to a competition between the intrinsic tendency of the cholesteric to twist and the anchoring free energy which suppresses it. We then characterise the topological phases arising close to the isotropic-cholesteric transition. These typically consist of quasi-crystalline or amorphous tessellations of the surface by half-skyrmions, which are stable at lower and larger shell sizes, respectively. For ellipsoidal shells, defects in the tessellation couple to a local curvature, and according to the shell size, they either migrate to the poles or distribute uniformly on the surface. For toroidal shells, the variations in the local curvature of the surface stabilise heterogeneous phases where cholesteric or isotropic patterns coexist with hexagonal lattices of half-skyrmions.

2.
Nat Commun ; 14(1): 1096, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841803

RESUMEN

Active fluid droplets are a class of soft materials exhibiting autonomous motion sustained by an energy supply. Such systems have been shown to capture motility regimes typical of biological cells and are ideal candidates as building-block for the fabrication of soft biomimetic materials of interest in pharmacology, tissue engineering and lab on chip devices. While their behavior is well established in unconstrained environments, much less is known about their dynamics under strong confinement. Here, we numerically study the physics of a droplet of active polar fluid migrating within a microchannel hosting a constriction with adhesive properties, and report evidence of a striking variety of dynamic regimes and morphological features, whose properties crucially depend upon droplet speed and elasticity, degree of confinement within the constriction and adhesiveness to the pore. Our results suggest that non-uniform adhesion forces are instrumental in enabling the crossing through narrow orifices, in contrast to larger gaps where a careful balance between speed and elasticity is sufficient to guarantee the transition. These observations may be useful for improving the design of artificial micro-swimmers, of interest in material science and pharmaceutics, and potentially for cell sorting in microfluidic devices.

3.
J Phys Condens Matter ; 34(29)2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35512678

RESUMEN

We study the dynamics of double-stranded DNA (dsDNA) denaturation using Brownian dynamics simulations. We use a coarse-grained single nucleotide model for dsDNA which considers the helix structure. We compare the melting dynamics for free DNA of length 300 base pairs with that of a DNA of the same length but fixed from one end-mimicking DNA tethered to a substrate. We find that free DNA melts at faster rate because the entropic gain associated with denaturation is larger. Additionally, we insert the DNA in nanochannels of different widths to study the influence of the confinement on the melting dynamics. Our results suggest that there is no significant difference in the critical temperature or rate of melting when the channel width⩾Rg/2, whereRgis the radius of gyration of DNA. Instead, at channel width ofRg/4 we only see partial denaturation at the free DNA melting temperature. Surprisingly, this trend is reversed at higher temperature, and we find that at 110 °C tight confinement results in faster melting. This is due to the fact that confinement promotes segregation of the single-stranded segment, thereby acting as an effective entropic force aiding denaturation.


Asunto(s)
ADN , Simulación de Dinámica Molecular , Emparejamiento Base , ADN/química , Entropía , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico
4.
Phys Rev Lett ; 128(2): 027801, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35089738

RESUMEN

We study the phase behavior of a quasi-two-dimensional cholesteric liquid crystal shell. We characterize the topological phases arising close to the isotropic-cholesteric transition and show that they differ in a fundamental way from those observed on a flat geometry. For spherical shells, we discover two types of quasi-two-dimensional topological phases: finite quasicrystals and amorphous structures, both made up of mixtures of polygonal tessellations of half-skyrmions. These structures generically emerge instead of regular double twist lattices because of geometric frustration, which disallows a regular hexagonal tiling of curved space. For toroidal shells, the variations in the local curvature of the surface stabilizes heterogeneous phases where cholesteric patterns coexist with hexagonal lattices of half-skyrmions. Quasicrystals and amorphous and heterogeneous structures could be sought experimentally by self-assembling cholesteric shells on the surface of emulsion droplets.

5.
Nat Commun ; 12(1): 6812, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819516

RESUMEN

Understanding the interactions between viruses and surfaces or interfaces is important, as they provide the principles underpinning the cleaning and disinfection of contaminated surfaces. Yet, the physics of such interactions is currently poorly understood. For instance, there are longstanding experimental observations suggesting that the presence of air-water interfaces can generically inactivate and kill viruses, yet the mechanism underlying this phenomenon remains unknown. Here we use theory and simulations to show that electrostatics may provide one such mechanism, and that this is very general. Thus, we predict that the electrostatic free energy of an RNA virus should increase by several thousands of kBT as the virion breaches an air-water interface. We also show that the fate of a virus approaching a generic liquid-liquid interface depends strongly on the detailed balance between interfacial and electrostatic forces, which can be tuned, for instance, by choosing different media to contact a virus-laden respiratory droplet. Tunability arises because both the electrostatic and interfacial forces scale similarly with viral size. We propose that these results can be used to design effective strategies for surface disinfection.


Asunto(s)
Aire , Desinfección , Virus ARN/química , Aerosoles y Gotitas Respiratorias/química , Agua , Interacciones Hidrofóbicas e Hidrofílicas , Aerosoles y Gotitas Respiratorias/virología , Electricidad Estática , Propiedades de Superficie
6.
Nat Commun ; 12(1): 5756, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599163

RESUMEN

The discovery that overexpressing one or a few critical transcription factors can switch cell state suggests that gene regulatory networks are relatively simple. In contrast, genome-wide association studies (GWAS) point to complex phenotypes being determined by hundreds of loci that rarely encode transcription factors and which individually have small effects. Here, we use computer simulations and a simple fitting-free polymer model of chromosomes to show that spatial correlations arising from 3D genome organisation naturally lead to stochastic and bursty transcription as well as complex small-world regulatory networks (where the transcriptional activity of each genomic region subtly affects almost all others). These effects require factors to be present at sub-saturating levels; increasing levels dramatically simplifies networks as more transcription units are pressed into use. Consequently, results from GWAS can be reconciled with those involving overexpression. We apply this pan-genomic model to predict patterns of transcriptional activity in whole human chromosomes, and, as an example, the effects of the deletion causing the diGeorge syndrome.


Asunto(s)
Redes Reguladoras de Genes , Genoma Humano , Modelos Genéticos , Factores de Transcripción/metabolismo , Cromatina/química , Cromatina/metabolismo , Cromosomas Humanos/química , Cromosomas Humanos/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Polímeros/química , Polímeros/metabolismo , Sitios de Carácter Cuantitativo , Transcripción Genética
7.
J R Soc Interface ; 18(181): 20210229, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34428944

RESUMEN

We theoretically study the integration of short viral DNA in a DNA braid made up by two entwined double-stranded DNA molecules. We show that the statistics of single integration events substantially differ in the straight and buckled, or plectonemic, phase of the braid and are more likely in the latter. We further discover that integration is most likely close to plectoneme tips, where the larger bending energy helps overcome the associated energy barrier and that successive integration events are spatio-temporally correlated, suggesting a potential mechanistic explanation of clustered integration sites in host genomes. The braid geometry we consider provides a novel experimental set-up to quantify integration in a supercoiled substrate in vitro, and to better understand the role of double-stranded DNA topology during this process.


Asunto(s)
ADN Superhelicoidal , ADN , Conformación de Ácido Nucleico
8.
Sci Rep ; 10(1): 15936, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32985576

RESUMEN

We use computer simulations to study the morphology and rheological properties of a bidimensional emulsion resulting from a mixture of a passive isotropic fluid and an active contractile polar gel, in the presence of a surfactant that favours the emulsification of the two phases. By varying the intensity of the contractile activity and of an externally imposed shear flow, we find three possible morphologies. For low shear rates, a simple lamellar state is obtained. For intermediate activity and shear rate, an asymmetric state emerges, which is characterized by shear and concentration banding at the polar/isotropic interface. A further increment in the active forcing leads to the self-assembly of a soft channel where an isotropic fluid flows between two layers of active material. We characterize the stability of this state by performing a dynamical test varying the intensity of the active forcing and shear rate. Finally, we address the rheological properties of the system by measuring the effective shear viscosity, finding that this increases as active forcing is increased-so that the fluid thickens with activity.

9.
Phys Rev Lett ; 124(19): 198101, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32469558

RESUMEN

Vital biological processes such as genome repair require fast and efficient binding of selected proteins to specific target sites on DNA. Here we propose an active target search mechanism based on "chromophoresis," the dynamics of DNA-binding proteins up or down gradients in the density of epigenetic marks, or colors (biochemical tags on the genome). We focus on a set of proteins that deposit marks from which they are repelled-a case which is only encountered away from thermodynamic equilibrium. For suitable ranges of kinetic parameter values, chromophoretic proteins can perform undirectional motion and are optimally redistributed along the genome. Importantly, they can also locally unravel a region of the genome which is collapsed due to self-interactions and "dive" deep into its core, for a striking enhancement of the efficiency of target search on such an inaccessible substrate. We discuss the potential relevance of chromophoresis for DNA repair.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN/genética , ADN/metabolismo , Genoma Humano , Modelos Genéticos , Cromatina/genética , Cromatina/metabolismo , Simulación por Computador , Daño del ADN , Reparación del ADN , Epigénesis Genética , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Moleculares , Poli Adenosina Difosfato Ribosa/genética , Poli Adenosina Difosfato Ribosa/metabolismo
10.
Soft Matter ; 16(9): 2406-2414, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32067018

RESUMEN

We use Brownian dynamics simulations to study the formation of chromatin loops through diffusive sliding of slip-link-like proteins, mimicking the behaviour of cohesin molecules. We recently proposed that diffusive sliding is sufficient to explain the extrusion of chromatin loops of hundreds of kilo-base-pairs (kbp), which may then be stabilised by interactions between cohesin and CTCF proteins. Here we show that the flexibility of the chromatin fibre strongly affects this dynamical process, and find that diffusive loop extrusion is more efficient on stiffer chromatin regions. We also show that the dynamics of loop formation are faster in confined and collapsed chromatin conformations but that this enhancement is counteracted by the increased crowding. We provide a simple theoretical argument explaining why stiffness and collapsed conformations favour diffusive extrusion. In light of the heterogeneous physical and conformational properties of eukaryotic chromatin, we suggest that our results are relevant to understand the looping and organisation of interphase chromosomes in vivo.


Asunto(s)
Cromatina/química , Cromosomas/química , Eucariontes/genética , Animales , Factor de Unión a CCCTC/química , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/genética , Cromosomas/metabolismo , Difusión , Eucariontes/química , Eucariontes/metabolismo , Humanos , Modelos Biológicos , Cohesinas
11.
Brief Funct Genomics ; 19(2): 111-118, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-31971237

RESUMEN

We review the mechanism and consequences of the 'bridging-induced attraction', a generic biophysical principle that underpins some existing models for chromosome organization in 3D. This attraction, which was revealed in polymer physics-inspired computer simulations, is a generic clustering tendency arising in multivalent chromatin-binding proteins, and it provides an explanation for the biogenesis of nuclear bodies and transcription factories via microphase separation. Including post-translational modification reactions involving these multivalent proteins can account for the fast dynamics of the ensuing clusters, as is observed via microscopy and photobleaching experiments. The clusters found in simulations also give rise to chromatin domains that conform well with the observation of A/B compartments in HiC experiments.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Fotoblanqueo , Procesamiento Proteico-Postraduccional
12.
Soft Matter ; 15(34): 6896-6902, 2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31423501

RESUMEN

We study the dynamics of quasi-two-dimensional concentrated suspensions of colloidal particles in active gels by computer simulations. Remarkably, we find that activity induces a dynamic clustering of colloids even in the absence of any preferential anchoring of the active nematic director at the particle surface. When such an anchoring is present, active stresses instead compete with elastic forces and re-disperse the aggregates observed in passive colloid-liquid crystal composites. Our quasi-two-dimensional "inverse" dispersions of passive particles in active fluids (as opposed to the more common "direct" suspensions of active particles in passive fluids) provide a promising route towards the self-assembly of new soft materials.

13.
Soft Matter ; 15(29): 5995-6005, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31292585

RESUMEN

We present a generic coarse-grained model to describe molecular motors acting on polymer substrates, mimicking, for example, RNA polymerase on DNA or kinesin on microtubules. The polymer is modeled as a connected chain of beads; motors are represented as freely diffusing beads which, upon encountering the substrate, bind to it through a short-ranged attractive potential. When bound, motors and polymer beads experience an equal and opposite active force, directed tangential to the polymer; this leads to motion of the motors along the polymer contour. The inclusion of explicit motors differentiates our model from other recent active polymer models. We study, by means of Langevin dynamics simulations, the effect of the motor activity on both the conformational and dynamical properties of the substrate. We find that activity leads, in addition to the expected enhancement of polymer diffusion, to an effective reduction of its persistence length. We discover that this effective "softening" is a consequence of the emergence of double-folded branches, or hairpins, and that it can be tuned by changing the number of motors or the force they generate. Finally, we investigate the effect of the motors on the probability of knot formation. Counter-intuitively our simulations reveal that, even though at equilibrium a more flexible substrate would show an increased knotting probability, motor activity leads to a marked decrease in the occurrence of knotted conformations with respect to equilibrium.

14.
Phys Rev E ; 99(4-1): 042124, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31108715

RESUMEN

We study the statistical mechanics of a single active slider on a fluctuating interface, by means of numerical simulations and theoretical arguments. The slider, which moves by definition towards the interface minima, is active as it also stimulates growth of the interface. Even though such a particle has no counterpart in thermodynamic systems, active sliders may provide a simple model for ATP-dependent membrane proteins that activate cytoskeletal growth. We find a wide range of dynamical regimes according to the ratio between the timescales associated with the slider motion and the interface relaxation. If the interface dynamics is slow, the slider behaves like a random walker in a random environment, which, furthermore, is able to escape environmental troughs by making them grow. This results in different dynamic exponents to the interface and the particle: the former behaves as an Edward-Wilkinson surface with dynamic exponent 2, whereas the latter has dynamic exponent 3/2. When the interface is fast, we get sustained ballistic motion with the particle surfing a membrane wave created by itself. However, if the interface relaxes immediately (i.e., it is infinitely fast), particle motion becomes symmetric and goes back to diffusive. Due to such a rich phenomenology, we propose the active slider as a toy model of fundamental interest in the field of active membranes and, generally, whenever the system constituent can alter the environment by spending energy.

15.
Nat Commun ; 10(1): 575, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718508

RESUMEN

Certain retroviruses, including HIV, insert their DNA in a non-random fraction of the host genome via poorly understood selection mechanisms. Here, we develop a biophysical model for retroviral integration as stochastic and quasi-equilibrium topological reconnections between polymers. We discover that physical effects, such as DNA accessibility and elasticity, play important and universal roles in this process. Our simulations predict that integration is favoured within nucleosomal and flexible DNA, in line with experiments, and that these biases arise due to competing energy barriers associated with DNA deformations. By considering a long chromosomal region in human T-cells during interphase, we discover that at these larger scales integration sites are predominantly determined by chromatin accessibility. Finally, we propose and solve a reaction-diffusion problem that recapitulates the distribution of HIV hot-spots within T-cells. With few generic assumptions, our model can rationalise experimental observations and identifies previously unappreciated physical contributions to retroviral integration site selection.


Asunto(s)
Genoma Humano/genética , Retroviridae/genética , ADN/genética , VIH-1/genética , Humanos , Nucleosomas/genética , Nucleosomas/metabolismo , Linfocitos T/metabolismo
16.
Sci Rep ; 9(1): 2801, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808917

RESUMEN

We study numerically the behaviour of a two-dimensional mixture of a passive isotropic fluid and an active polar gel, in the presence of a surfactant favouring emulsification. Focussing on parameters for which the underlying free energy favours the lamellar phase in the passive limit, we show that the interplay between nonequilibrium and thermodynamic forces creates a range of multifarious exotic emulsions. When the active component is contractile (e.g., an actomyosin solution), moderate activity enhances the efficiency of lamellar ordering, whereas strong activity favours the creation of passive droplets within an active matrix. For extensile activity (occurring, e.g., in microtubule-motor suspensions), instead, we observe an emulsion of spontaneously rotating droplets of different size. By tuning the overall composition, we can create high internal phase emulsions, which undergo sudden phase inversion when activity is switched off. Therefore, we find that activity provides a single control parameter to design composite materials with a strikingly rich range of morphologies.

17.
Soft Matter ; 14(46): 9361-9367, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30431641

RESUMEN

Dense suspensions of soft colloidal particles display a broad range of physical and rheological properties which are still far from being fully understood. To elucidate the role of deformability on colloidal flow, we employ computer simulations to measure the apparent viscosity of a system of droplets of variable surface tension subjected to a pressure-driven flow. We confirm that our suspension generically undergoes discontinuous shear thinning, and determine the dependence of the onset of the discontinuity on surface tension. We find that the effective viscosity of the suspension is mainly determined by a capillary number. We present active microrheology simulations, where a single droplet is dragged through the suspension. These also show a dynamical phase transition, analogous to the one associated with discontinuous shear thinning in our interpretation. Such a transition is signalled by a discontinuity in the droplet velocity versus applied force.

18.
Nat Commun ; 9(1): 4190, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305618

RESUMEN

How a single bacterium becomes a colony of many thousand cells is important in biomedicine and food safety. Much is known about the molecular and genetic bases of this process, but less about the underlying physical mechanisms. Here we study the growth of single-layer micro-colonies of rod-shaped Escherichia coli bacteria confined to just under the surface of soft agarose by a glass slide. Analysing this system as a liquid crystal, we find that growth-induced activity fragments the colony into microdomains of well-defined size, whilst the associated flow orients it tangentially at the boundary. Topological defect pairs with charges [Formula: see text] are produced at a constant rate, with the [Formula: see text] defects being propelled to the periphery. Theoretical modelling suggests that these phenomena have different physical origins from similar observations in other extensile active nematics, and a growing bacterial colony belongs to a new universality class, with features reminiscent of the expanding universe.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Modelos Biológicos , Recuento de Colonia Microbiana , Simulación por Computador , Estrés Fisiológico
19.
Phys Rev Lett ; 121(3): 037802, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30085823

RESUMEN

We numerically investigate the behavior of a phase-separating mixture of a blue phase I liquid crystal with an isotropic fluid. The resulting morphology is primarily controlled by an inverse capillary number, χ, setting the balance between interfacial and elastic forces. When χ and the concentration of the isotropic component are both low, the blue phase disclination lattice templates a cubic array of fluid cylinders. For larger χ, the isotropic phase arranges primarily into liquid emulsion droplets which coarsen very slowly, rewiring the blue phase disclination lines into an amorphous elastic network. Our blue phase-simple fluid composites can be externally manipulated: an electric field can trigger a morphological transition between cubic fluid cylinder phases with different topologies.

20.
Phys Rev Lett ; 120(25): 258001, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29979071

RESUMEN

Inspired by recent experimental observations of patterning at the membrane of a living cell, we propose a generic model for the dynamics of a fluctuating interface driven by particlelike inclusions which stimulate its growth. We find that the coupling between interfacial and inclusions dynamics yields microphase separation and the self-organization of traveling waves. These patterns are strikingly similar to those detected in experiments on biological membranes. Our results further show that the active growth kinetics do not fall into the Kardar-Parisi-Zhang universality class for growing interfaces, displaying instead a novel superposition of scaling and sustained oscillations.


Asunto(s)
Membrana Celular/fisiología , Movimiento Celular/fisiología , Proteínas de la Membrana/fisiología , Modelos Biológicos , Modelos Teóricos , Procesos de Crecimiento Celular/fisiología , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA