Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Gene Expr Patterns ; 12(1-2): 11-7, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22033538

RESUMEN

The specification of temporal identity within single progenitor lineages is essential to generate functional neuronal diversity in Drosophila and mammals. In Drosophila, four transcription factors are sequentially expressed in neural progenitors (neuroblasts) and each regulates the temporal identity of the progeny produced during its expression window. The first temporal identity is established by the Ikaros-family zinc finger transcription factor Hunchback (Hb). Hb is detected in young (newly-formed) neuroblasts for about an hour and is maintained in the early-born neurons produced during this interval. Hb is necessary and sufficient to specify early-born neuronal or glial identity in multiple neuroblast lineages. The timing of hb expression in neuroblasts is regulated at the transcriptional level. Here we identify cis-regulatory elements that confer proper hb expression in "young" neuroblasts and early-born neurons. We show that the neuroblast element contains clusters of predicted binding sites for the Seven-up transcription factor, which is known to limit hb neuroblast expression. We identify highly conserved sequences in the neuronal element that are good candidates for maintaining Hb transcription in neurons. Our results provide the necessary foundation for identifying trans-acting factors that establish the Hb early temporal expression domain.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Neuronas/citología , Elementos Reguladores de la Transcripción , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Secuencia de Bases , Sitios de Unión , Sistema Nervioso Central/citología , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo , Proteínas de Unión al ADN/metabolismo , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Genes Reporteros , Mamíferos/genética , Mamíferos/metabolismo , Datos de Secuencia Molecular , Neuronas/metabolismo , Factores de Tiempo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transgenes
2.
Proc Natl Acad Sci U S A ; 105(29): 10085-9, 2008 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-18621706

RESUMEN

Maternal-Effect Dominant Embryonic Arrest ("Medea") factors are selfish nuclear elements that combine maternal-lethal and zygotic-rescue activities to gain a postzygotic survival advantage. We show that Medea(1) activity in Tribolium castaneum is associated with a composite Tc1 transposon inserted just downstream of the neurotransmitter reuptake symporter bloated tubules (blot), whose Drosophila ortholog has both maternal and zygotic functions. The 21.5-kb insertion contains defective copies of elongation initiation factor-3, ATP synthase subunit C, and an RNaseD-related gene, as well as a potentially intact copy of a prokaryotic DUF1703 gene. Sequence comparisons suggest that the current distribution of Medea(1) reflects global emanation after a single transpositional event in recent evolutionary time. The Medea system in Tribolium represents an unusual type of intragenomic conflict and could provide a useful vehicle for driving desirable genes into populations.


Asunto(s)
Elementos Transponibles de ADN/genética , Genes de Insecto , Secuencias Repetitivas de Ácidos Nucleicos , Tribolium/genética , Animales , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos/genética , Clonación Molecular , Femenino , Dosificación de Gen , Genes Letales , Masculino , Datos de Secuencia Molecular , Mutación , Filogenia , Cigoto
4.
Nat Genet ; 36(3): 288-92, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14981519

RESUMEN

In fruit fly research, chromosomal deletions are indispensable tools for mapping mutations, characterizing alleles and identifying interacting loci. Most widely used deletions were generated by irradiation or chemical mutagenesis. These methods are labor-intensive, generate random breakpoints and result in unwanted secondary mutations that can confound phenotypic analyses. Most of the existing deletions are large, have molecularly undefined endpoints and are maintained in genetically complex stocks. Furthermore, the existence of haplolethal or haplosterile loci makes the recovery of deletions of certain regions exceedingly difficult by traditional methods, resulting in gaps in coverage. Here we describe two methods that address these problems by providing for the systematic isolation of targeted deletions in the D. melanogaster genome. The first strategy used a P element-based technique to generate deletions that closely flank haploinsufficient genes and minimize undeleted regions. This deletion set has increased overall genomic coverage by 5-7%. The second strategy used FLP recombinase and the large array of FRT-bearing insertions described in the accompanying paper to generate 519 isogenic deletions with molecularly defined endpoints. This second deletion collection provides 56% genome coverage so far. The latter methodology enables the generation of small custom deletions with predictable endpoints throughout the genome and should make their isolation a simple and routine task.


Asunto(s)
Elementos Transponibles de ADN , Drosophila melanogaster/genética , Eliminación de Secuencia , Animales , Genoma , Mutagénesis Insercional
5.
Nat Genet ; 36(3): 283-7, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14981521

RESUMEN

With the availability of complete genome sequence for Drosophila melanogaster, one of the next strategic goals for fly researchers is a complete gene knockout collection. The P-element transposon, the workhorse of D. melanogaster molecular genetics, has a pronounced nonrandom insertion spectrum. It has been estimated that 87% saturation of the approximately 13,500-gene complement of D. melanogaster might require generating and analyzing up to 150,000 insertions. We describe specific improvements to the lepidopteran transposon piggyBac and the P element that enabled us to tag and disrupt genes in D. melanogaster more efficiently. We generated over 29,000 inserts resulting in 53% gene saturation and a more diverse collection of phenotypically stronger insertional alleles. We found that piggyBac has distinct global and local gene-tagging behavior from that of P elements. Notably, piggyBac excisions from the germ line are nearly always precise, piggyBac does not share chromosomal hotspots associated with P and piggyBac is more effective at gene disruption because it lacks the P bias for insertion in 5' regulatory sequences.


Asunto(s)
Elementos Transponibles de ADN , Drosophila melanogaster/genética , Genes de Insecto , Animales , Mutagénesis Insercional
6.
Drug Discov Today Technol ; 1(2): 157-62, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24981386

RESUMEN

Yeast biology has yielded major insights into fundamental cellular biology and has served as a remarkable platform for technical innovation. We review how these resources can be applied to the validation of mammalian or anti-fungal drug targets. These approaches range from elucidating synergistic interactions between drugs and targets to facile methods for tracking proteins in the cell or characterization of receptor biology. We also discuss web-based resources that integrate the extensive biochemical, cell biological, and genetic literature exploring the basic biology of these model eukaryotic cells.:

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA