Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Res ; 12(4): 413-426, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38349973

RESUMEN

Neutrophils are the most abundant leukocytes in human blood and play a primary role in resistance against invading microorganisms and in the acute inflammatory response. However, their role in colitis and colitis-associated colorectal cancer is still under debate. This study aims to dissect the role of neutrophils in these pathologic contexts by using a rigorous genetic approach. Neutrophil-deficient mice (Csf3r-/- mice) were used in classic models of colitis and colitis-associated colorectal cancer and the role of neutrophils was assessed by histologic, cellular, and molecular analyses coupled with adoptive cell transfer. We also performed correlative analyses using human datasets. Csf3r-/- mice showed increased susceptibility to colitis and colitis-associated colorectal cancer compared with control Csf3r+/+ mice and adoptive transfer of neutrophils in Csf3r-/- mice reverted the phenotype. In colitis, Csf3r-/- mice showed increased bacterial invasion and a reduced number of healing ulcers in the colon, indicating a compromised regenerative capacity of epithelial cells. Neutrophils were essential for γδ T-cell polarization and IL22 production. In patients with ulcerative colitis, expression of CSF3R was positively correlated with IL22 and IL23 expression. Moreover, gene signatures associated with epithelial-cell development, proliferation, and antimicrobial response were enriched in CSF3Rhigh patients. Our data support a model where neutrophils mediate protection against intestinal inflammation and colitis-associated colorectal cancer by controlling the intestinal microbiota and driving the activation of an IL22-dependent tissue repair pathway.


Asunto(s)
Colitis Ulcerosa , Neoplasias Asociadas a Colitis , Neutrófilos , Animales , Humanos , Ratones , Carcinogénesis , Colitis/patología , Colitis Ulcerosa/metabolismo , Neoplasias Asociadas a Colitis/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/inmunología , Neutrófilos/metabolismo
2.
Front Oncol ; 12: 911613, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928879

RESUMEN

Background: Circulating microRNAs (ct-miRs) are promising cancer biomarkers. This study focuses on platform comparison to assess performance variability, agreement in the assignment of a miR signature classifier (MSC), and concordance for the identification of cancer-associated miRs in plasma samples from non-small cell lung cancer (NSCLC) patients. Methods: A plasma cohort of 10 NSCLC patients and 10 healthy donors matched for clinical features and MSC risk level was profiled for miR expression using two sequencing-based and three quantitative reverse transcription PCR (qPCR)-based platforms. Intra- and inter-platform variations were examined by correlation and concordance analysis. The MSC risk levels were compared with those estimated using a reference method. Differentially expressed ct-miRs were identified among NSCLC patients and donors, and the diagnostic value of those dysregulated in patients was assessed by receiver operating characteristic curve analysis. The downregulation of miR-150-5p was verified by qPCR. The Cancer Genome Atlas (TCGA) lung carcinoma dataset was used for validation at the tissue level. Results: The intra-platform reproducibility was consistent, whereas the highest values of inter-platform correlations were among qPCR-based platforms. MSC classification concordance was >80% for four platforms. The dysregulation and discriminatory power of miR-150-5p and miR-210-3p were documented. Both were significantly dysregulated also on TCGA tissue-originated profiles from lung cell carcinoma in comparison with normal samples. Conclusion: Overall, our studies provide a large performance analysis between five different platforms for miR quantification, indicate the solidity of MSC classifier, and identify two noninvasive biomarkers for NSCLC.

3.
Front Immunol ; 13: 804641, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35211118

RESUMEN

Interleukin-1 (IL-1) is a primary cytokine of innate immunity and inflammation. IL-1 belongs to a complex family including ligands with agonist activity, receptor antagonists, and an anti-inflammatory cytokine. The receptors for these ligands, the IL-1 Receptor (IL-1R) family, include signaling receptor complexes, decoy receptors, and negative regulators. Agonists and regulatory molecules co-evolved, suggesting the evolutionary relevance of a tight control of inflammatory responses, which ensures a balance between amplification of innate immunity and uncontrolled inflammation. IL-1 family members interact with innate immunity cells promoting innate immunity, as well as with innate and adaptive lymphoid cells, contributing to their differentiation and functional polarization and plasticity. Here we will review the properties of two key regulatory receptors of the IL-1 system, IL-1R2, the first decoy receptor identified, and IL-1R8, a pleiotropic regulator of different IL-1 family members and co-receptor for IL-37, the anti-inflammatory member of the IL-1 family. Their complex impact in pathology, ranging from infections and inflammatory responses, to cancer and neurologic disorders, as well as clinical implications and potential therapeutic exploitation will be presented.


Asunto(s)
Inmunidad Innata , Inflamación/inmunología , Receptores Tipo II de Interleucina-1/metabolismo , Receptores de Interleucina-1/metabolismo , Animales , Humanos , Inmunomodulación , Neoplasias/inmunología , Enfermedades del Sistema Nervioso/inmunología
4.
Cancers (Basel) ; 13(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34439180

RESUMEN

In population-based screens, tissue biopsy remains the standard practice for women with imaging that suggests breast cancer. We examined circulating microRNAs as minimally invasive diagnostic biomarkers to discriminate malignant from benign breast lesions. miRNAs were analyzed by OpenArray in a retrospective cohort of plasma samples including 100 patients with malignant (T), 89 benign disease (B), and 99 healthy donors (HD) divided into training and testing sets and a prospective cohort (BABE) of 289 women with suspicious imaging findings who underwent tissue biopsy. miRNAs associated with disease status were identified by univariate analysis and then combined into signatures by multivariate logistic regression models. By combining 16 miRNAs differentially expressed in the T vs. HD comparison, 26 signatures were also able to significantly discriminate T from B disease. Seven of them, involving 5 specific miRNAs (miR-625, miR-423-5p, miR-370-3p, miR-181c, and miR-301b), were statistically validated in the testing set. Among the 7 signatures, the discriminatory performances of 5 were confirmed in the prospective BABE Cohort. This study identified 5 circulating miRNAs that, properly combined, distinguish malignant from benign breast disease in women with a high likelihood of malignancy.

5.
Front Immunol ; 12: 666198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093560

RESUMEN

Klebsiella pneumoniae is a common pathogen in human sepsis. The emergence of multidrug-resistant K. pneumoniae strains represents a major clinical challenge in nosocomial and community acquired infections. The long pentraxin PTX3, a key component of humoral innate immunity, is involved in resistance to selected pathogens by promoting opsonophagocytosis. We investigated the relevance of PTX3 in innate immunity against K. pneumoniae infections using Ptx3-/- mice and mouse models of severe K. pneumoniae infections. Local and systemic PTX3 expression was induced following K. pneumoniae pulmonary infection, in association with the up-regulation of TNF-α and IL-1ß. PTX3 deficiency in mice was associated with higher bacterial burden and mortality, release of pro-inflammatory cytokines as well as IL-10 in the lung and systemically. The analysis of the mechanisms responsible of PTX3-dependent control of K. pneumoniae infection revealed that PTX3 did not interact with K. pneumoniae, or promote opsonophagocytosis. The comparison of susceptibility of wild-type, Ptx3-/-, C3-/- and Ptx3-/- /C3-/- mice to the infection showed that PTX3 acted in a complement-independent manner. Lung histopathological analysis showed more severe lesions in Ptx3-/- mice with fibrinosuppurative, necrotizing and haemorrhagic bronchopneumonia, associated with increased fibrin deposition in the lung and circulating fibrinogen consumption. These findings indicate that PTX3 contributes to the control of K. pneumoniae infection by modulating inflammatory responses and tissue damage. Thus, this study emphasizes the relevance of the role of PTX3 as regulator of inflammation and orchestrator of tissue repair in innate responses to infections.


Asunto(s)
Proteína C-Reactiva/inmunología , Infecciones por Klebsiella/inmunología , Klebsiella pneumoniae/patogenicidad , Componente Amiloide P Sérico/inmunología , Animales , Carga Bacteriana/inmunología , Proteína C-Reactiva/deficiencia , Proteína C-Reactiva/metabolismo , Citocinas/metabolismo , Fibrina/metabolismo , Fibrinógeno/metabolismo , Inmunidad Innata , Inflamación , Infecciones por Klebsiella/metabolismo , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/patología , Klebsiella pneumoniae/inmunología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/patología , Ratones , Sepsis/inmunología , Sepsis/metabolismo , Sepsis/microbiología , Sepsis/patología , Componente Amiloide P Sérico/deficiencia , Componente Amiloide P Sérico/metabolismo , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA