Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Natl Sci Rev ; 11(7): nwae073, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38883306

RESUMEN

Understanding the heterogeneous role of individuals in large-scale information spreading is essential to manage online behavior as well as its potential offline consequences. To this end, most existing studies from diverse research domains focus on the disproportionate role played by highly connected 'hub' individuals. However, we demonstrate here that information superspreaders in online social media are best understood and predicted by simultaneously considering two individual-level behavioral traits: influence and susceptibility. Specifically, we derive a nonlinear network-based algorithm to quantify individuals' influence and susceptibility from multiple spreading event data. By applying the algorithm to large-scale data from Twitter and Weibo, we demonstrate that individuals' estimated influence and susceptibility scores enable predictions of future superspreaders above and beyond network centrality, and reveal new insights into the network positions of the superspreaders.

2.
IEEE Internet Things J ; 9(20): 20422-20430, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36415479

RESUMEN

Studying networked systems in a variety of domains, including biology, social science, and Internet of Things, has recently received a surge of attention. For a networked system, there are usually multiple types of interactions between its components, and such interaction-type information is crucial since it always associated with important features. However, some interaction types that actually exist in the network may not be observed in the metadata collected in practice. This article proposes an approach aiming to detect previously undiscovered interaction types (PUITs) in networked systems. The first step in our proposed PUIT detection approach is to answer the following fundamental question: is it possible to effectively detect PUITs without utilizing metadata other than the existing incomplete interaction-type information and the connection information of the system? Here, we first propose a temporal network model which can be used to mimic any real network and then discover that some special networks which fit the model shall a common topological property. Supported by this discovery, we finally develop a PUIT detection method for networks which fit the proposed model. Both analytical and numerical results show this detection method is more effective than the baseline method, demonstrating that effectively detecting PUITs in networks is achievable. More studies on PUIT detection are of significance and in great need since this approach should be as essential as the previously undiscovered node-type detection which has gained great success in the field of biology.

3.
Phys Rev E ; 97(5-1): 052311, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29906916

RESUMEN

Complex networks are often used to represent systems that are not static but grow with time: People make new friendships, new papers are published and refer to the existing ones, and so forth. To assess the statistical significance of measurements made on such networks, we propose a randomization methodology-a time-respecting null model-that preserves both the network's degree sequence and the time evolution of individual nodes' degree values. By preserving the temporal linking patterns of the analyzed system, the proposed model is able to factor out the effect of the system's temporal patterns on its structure. We apply the model to the citation network of Physical Review scholarly papers and the citation network of US movies. The model reveals that the two data sets are strikingly different with respect to their degree-degree correlations, and we discuss the important implications of this finding on the information provided by paradigmatic node centrality metrics such as indegree and Google's PageRank. The randomization methodology proposed here can be used to assess the significance of any structural property in growing networks, which could bring new insights into the problems where null models play a critical role, such as the detection of communities and network motifs.

4.
Entropy (Basel) ; 20(10)2018 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33265856

RESUMEN

Nestedness refers to the structural property of complex networks that the neighborhood of a given node is a subset of the neighborhoods of better-connected nodes. Following the seminal work by Patterson and Atmar (1986), ecologists have been long interested in revealing the configuration of maximal nestedness of spatial and interaction matrices of ecological communities. In ecology, the BINMATNEST genetic algorithm can be considered as the state-of-the-art approach for this task. On the other hand, the fitness-complexity ranking algorithm has been recently introduced in the economic complexity literature with the original goal to rank countries and products in World Trade export networks. Here, by bringing together quantitative methods from ecology and economic complexity, we show that the fitness-complexity algorithm is highly effective in the nestedness maximization task. More specifically, it generates matrices that are more nested than the optimal ones by BINMATNEST for 61.27% of the analyzed mutualistic networks. Our findings on ecological and World Trade data suggest that beyond its applications in economic complexity, the fitness-complexity algorithm has the potential to become a standard tool in nestedness analysis.

5.
Entropy (Basel) ; 20(10)2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-33265865

RESUMEN

Real networks typically studied in various research fields-ecology and economic complexity, for example-often exhibit a nested topology, which means that the neighborhoods of high-degree nodes tend to include the neighborhoods of low-degree nodes. Focusing on nested networks, we study the problem of link prediction in complex networks, which aims at identifying likely candidates for missing links. We find that a new method that takes network nestedness into account outperforms well-established link-prediction methods not only when the input networks are sufficiently nested, but also for networks where the nested structure is imperfect. Our study paves the way to search for optimal methods for link prediction in nested networks, which might be beneficial for World Trade and ecological network analysis.

6.
Sci Rep ; 5: 16181, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26553630

RESUMEN

PageRank is arguably the most popular ranking algorithm which is being applied in real systems ranging from information to biological and infrastructure networks. Despite its outstanding popularity and broad use in different areas of science, the relation between the algorithm's efficacy and properties of the network on which it acts has not yet been fully understood. We study here PageRank's performance on a network model supported by real data, and show that realistic temporal effects make PageRank fail in individuating the most valuable nodes for a broad range of model parameters. Results on real data are in qualitative agreement with our model-based findings. This failure of PageRank reveals that the static approach to information filtering is inappropriate for a broad class of growing systems, and suggest that time-dependent algorithms that are based on the temporal linking patterns of these systems are needed to better rank the nodes.

7.
Proc Natl Acad Sci U S A ; 112(8): 2361-6, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25675523

RESUMEN

The study of the properties of glass-forming liquids is difficult for many reasons. Analytic solutions of mean-field models are usually available only for systems embedded in a space with an unphysically high number of spatial dimensions; on the experimental and numerical side, the study of the properties of metastable glassy states requires thermalizing the system in the supercooled liquid phase, where the thermalization time may be extremely large. We consider here a hard-sphere mean-field model that is solvable in any number of spatial dimensions; moreover, we easily obtain thermalized configurations even in the glass phase. We study the 3D version of this model and we perform Monte Carlo simulations that mimic heating and cooling experiments performed on ultrastable glasses. The numerical findings are in good agreement with the analytical results and qualitatively capture the features of ultrastable glasses observed in experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA