Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(39): e2208390119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122225

RESUMEN

In bacterial cells, DNA damage tolerance is manifested by the action of translesion DNA polymerases that can synthesize DNA across template lesions that typically block the replicative DNA polymerase III. It has been suggested that one of these translesion DNA synthesis DNA polymerases, DNA polymerase IV, can either act in concert with the replisome, switching places on the ß sliding clamp with DNA polymerase III to bypass the template damage, or act subsequent to the replisome skipping over the template lesion in the gap in nascent DNA left behind as the replisome continues downstream. Evidence exists in support of both mechanisms. Using single-molecule analyses, we show that DNA polymerase IV associates with the replisome in a concentration-dependent manner and remains associated over long stretches of replication fork progression under unstressed conditions. This association slows the replisome, requires DNA polymerase IV binding to the ß clamp but not its catalytic activity, and is reinforced by the presence of the γ subunit of the ß clamp-loading DnaX complex in the DNA polymerase III holoenzyme. Thus, DNA damage is not required for association of DNA polymerase IV with the replisome. We suggest that under stress conditions such as induction of the SOS response, the association of DNA polymerase IV with the replisome provides both a surveillance/bypass mechanism and a means to slow replication fork progression, thereby reducing the frequency of collisions with template damage and the overall mutagenic potential.


Asunto(s)
ADN Polimerasa beta , ADN/metabolismo , ADN Polimerasa III/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Holoenzimas
2.
J Biol Chem ; 298(6): 101964, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35452680

RESUMEN

MukBEF, a structural maintenance of chromosome-like protein complex consisting of an ATPase, MukB, and two interacting subunits, MukE and MukF, functions as the bacterial condensin. It is likely that MukBEF compacts DNA via an ATP hydrolysis-dependent DNA loop-extrusion reaction similar to that demonstrated for the yeast structural maintenance of chromosome proteins condensin and cohesin. MukB also interacts with the ParC subunit of the cellular chromosomal decatenase topoisomerase IV, an interaction that is required for proper chromosome condensation and segregation in Escherichia coli, although it suppresses the MukB ATPase activity. Other structural determinants and interactions that regulate the ATPase activity of MukBEF are not clear. Here, we have investigated the MukBEF ATPase activity, identifying intersubunit and intrasubunit interactions by protein-protein crosslinking and site-specific mutagenesis. We show that interactions between the hinge of MukB and its neck region are essential for the ATPase activity, that the ParC subunit of topoisomerase IV inhibits the MukB ATPase by preventing this interaction, that MukE interaction with DNA is likely essential for viability, and that interactions between MukF and the MukB neck region are necessary for ATPase activity and viability.


Asunto(s)
Proteínas Cromosómicas no Histona , Proteínas de Escherichia coli , Proteínas Represoras , Adenosina Trifosfatasas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Bacterianos/metabolismo , Topoisomerasa de ADN IV/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Represoras/metabolismo
3.
Nucleic Acids Res ; 50(5): 2621-2634, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-34747485

RESUMEN

The bacterial condensin MukB and the cellular chromosomal decatenase, topoisomerase IV interact and this interaction is required for proper condensation and topological ordering of the chromosome. Here, we show that Topo IV stimulates MukB DNA condensation by stabilizing loops in DNA: MukB alone can condense nicked plasmid DNA into a protein-DNA complex that has greater electrophoretic mobility than that of the DNA alone, but both MukB and Topo IV are required for a similar condensation of a linear DNA representing long stretches of the chromosome. Remarkably, we show that rather than MukB stimulating the decatenase activity of Topo IV, as has been argued previously, in stoichiometric complexes of the two enzymes each inhibits the activity of the other: the ParC subunit of Topo IV inhibits the MukF-stimulated ATPase activity of MukB and MukB inhibits both DNA crossover trapping and DNA cleavage by Topo IV. These observations suggest that when in complex on the DNA, Topo IV inhibits the motor function of MukB and the two proteins provide a stable scaffold for chromosomal DNA condensation.


Asunto(s)
Topoisomerasa de ADN IV , Proteínas de Escherichia coli , Proteínas Cromosómicas no Histona/metabolismo , ADN/metabolismo , Topoisomerasa de ADN IV/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
4.
Nucleic Acids Res ; 49(17): 9870-9885, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34469567

RESUMEN

Collisions between the replisome and RNA polymerases [RNAP(s)] are the main obstacle to DNA replication. These collisions can occur either head-on or co-directionally with respect to the direction of translocation of both complexes. Whereas head-on collisions require additional factors to be resolved, co-directional collisions are thought to be overcome by the replisome itself using the mRNA transcript as a primer. We show that mRNA takeover is utilized primarily after collisions with single RNAP complexes with short transcripts. Bypass of more complex transcription complexes requires the synthesis of a new primer downstream of the RNAP for the replisome to resume leading-strand synthesis. In both cases, bypass proceeds with displacement of the RNAP. Rep, Mfd, UvrD and RNase H can process the RNAP block and facilitate replisome bypass by promoting the formation of continuous leading strands. Bypass of co-directional RNAP(s) and/or R-loops is determined largely by the length of the obstacle that the replisome needs to traverse: R-loops are about equally as potent obstacles as RNAP arrays if they occupy the same length of the DNA template.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN , Complejos Multienzimáticos , Transcripción Genética , Proteínas Bacterianas/metabolismo , ADN Helicasas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Estructuras R-Loop , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
5.
Nucleic Acids Res ; 48(18): 10353-10367, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32926139

RESUMEN

The vast majority of the genome is transcribed by RNA polymerases. G+C-rich regions of the chromosomes and negative superhelicity can promote the invasion of the DNA by RNA to form R-loops, which have been shown to block DNA replication and promote genome instability. However, it is unclear whether the R-loops themselves are sufficient to cause this instability or if additional factors are required. We have investigated replisome collisions with transcription complexes and R-loops using a reconstituted bacterial DNA replication system. RNA polymerase transcription complexes co-directionally oriented with the replication fork were transient blockages, whereas those oriented head-on were severe, stable blockages. On the other hand, replisomes easily bypassed R-loops on either template strand. Replication encounters with R-loops on the leading-strand template (co-directional) resulted in gaps in the nascent leading strand, whereas lagging-strand template R-loops (head-on) had little impact on replication fork progression. We conclude that whereas R-loops alone can act as transient replication blocks, most genome-destabilizing replication fork stalling likely occurs because of proteins bound to the R-loops.


Asunto(s)
Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Estructuras R-Loop/genética , Transcripción Genética , Composición de Base/genética , Estructuras Cromosómicas/genética , Cromosomas/genética , ADN Helicasas/genética , Reparación del ADN/genética , Escherichia coli/genética , Inestabilidad Genómica/genética
6.
J Biol Chem ; 295(30): 10368-10379, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32513870

RESUMEN

Induction of the SOS response, a cellular system triggered by DNA damage in bacteria, depends on DNA replication for the generation of the SOS signal, ssDNA. RecA binds to ssDNA, forming filaments that stimulate proteolytic cleavage of the LexA transcriptional repressor, allowing expression of > 40 gene products involved in DNA repair and cell cycle regulation. Here, using a DNA replication system reconstituted in vitro in tandem with a LexA cleavage assay, we studied LexA cleavage during DNA replication of both undamaged and base-damaged templates. Only a ssDNA-RecA filament supported LexA cleavage. Surprisingly, replication of an undamaged template supported levels of LexA cleavage like that induced by a template carrying two site-specific cyclobutane pyrimidine dimers. We found that two processes generate ssDNA that could support LexA cleavage. 1) During unperturbed replication, single-stranded regions formed because of stochastic uncoupling of the leading-strand DNA polymerase from the replication fork DNA helicase, and 2) on the damaged template, nascent leading-strand gaps were generated by replisome lesion skipping. The two pathways differed in that RecF stimulated LexA cleavage during replication of the damaged template, but not normal replication. RecF appears to facilitate RecA filament formation on the leading-strand ssDNA gaps generated by replisome lesion skipping.


Asunto(s)
Proteínas Bacterianas/química , Replicación del ADN , ADN Bacteriano/química , ADN de Cadena Simple/química , Escherichia coli/química , Proteolisis , Serina Endopeptidasas/química , Proteínas Bacterianas/metabolismo , ADN Bacteriano/biosíntesis , ADN de Cadena Simple/biosíntesis , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Rec A Recombinasas/química , Rec A Recombinasas/metabolismo , Serina Endopeptidasas/metabolismo
7.
Methods Mol Biol ; 2004: 169-180, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31147917

RESUMEN

Condensins in bacteria are one of the most important factors involved in the organization of long threads of DNA into compact chromosomes. The organization of DNA by condensins is vital to many DNA transactions including DNA repair and chromosome segregation. Although some of the activities of condensins are well studied, the mechanism of the overall process executed by condensins, DNA compaction, remains unclear. Here, we describe some of the methods used routinely in our laboratory to understand the mechanism of DNA compaction by Escherichia coli condensin MukB.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas Cromosómicas no Histona/genética , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Complejos Multiproteicos/genética , Segregación Cromosómica/genética , Cromosomas Bacterianos/genética , Escherichia coli/genética
8.
J Bacteriol ; 201(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30617245

RESUMEN

The role of DNA topoisomerase III (Topo III) in bacterial cells has proven elusive. Whereas eukaryotic Top IIIα homologs are clearly involved with homologs of the bacterial DNA helicase RecQ in unraveling double Holliday junctions, preventing crossover exchange of genetic information at unscheduled recombination intermediates, and Top IIIß homologs have been shown to be involved in regulation of various mRNAs involved in neuronal function, there is little evidence for similar reactions in bacteria. Instead, most data point to Topo III playing a role supplemental to that of topoisomerase IV in unlinking daughter chromosomes during DNA replication. In support of this model, we show that Escherichia coli Topo III associates with the replication fork in vivo (likely via interactions with the single-stranded DNA-binding protein and the ß clamp-loading DnaX complex of the DNA polymerase III holoenzyme), that the DnaX complex stimulates the ability of Topo III to unlink both catenated and precatenated DNA rings, and that ΔtopB cells show delayed and disorganized nucleoid segregation compared to that of wild-type cells. These data argue that Topo III normally assists topoisomerase IV in chromosome decatenation by removing excess positive topological linkages at or near the replication fork as they are converted into precatenanes.IMPORTANCE Topological entanglement between daughter chromosomes has to be reduced to exactly zero every time an E. coli cell divides. The enzymatic agents that accomplish this task are the topoisomerases. E. coli possesses four topoisomerases. It has been thought that topoisomerase IV is primarily responsible for unlinking the daughter chromosomes during DNA replication. We show here that topoisomerase III also plays a role in this process and is specifically localized to the replisome, the multiprotein machine that duplicates the cell's genome, in order to do so.


Asunto(s)
Cromosomas Bacterianos/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Bacteriano/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Cromosomas Bacterianos/química , ADN Bacteriano/química , Conformación de Ácido Nucleico
9.
J Biol Chem ; 294(3): 852-860, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30482842

RESUMEN

DNA template damage can potentially block DNA replication. Cells have therefore developed different strategies to repair template lesions. Activation of the bacterial lesion bypass DNA polymerase V (Pol V) requires both the cleavage of the UmuD subunit to UmuD' and the acquisition of a monomer of activated RecA recombinase, forming Pol V Mut. Both of these events are mediated by the generation of RecA* via the formation of a RecA-ssDNA filament during the SOS response. Formation of RecA* is itself modulated by competition with the ssDNA-binding protein (SSB) for binding to ssDNA. Previous observations have demonstrated that RecA filament formation on SSB-coated DNA can be favored in the presence of the recombination mediator proteins RecF, RecO, and RecR. We show here using purified proteins that in the presence of SSB and RecA, a stable RecA-ssDNA filament is not formed, although sufficient RecA* is generated to support some activation of Pol V. The presence of RecFOR increased RecA* generation and allowed Pol V to synthesize longer DNA products and to elongate from an unpaired primer terminus opposite template damage, also without the generation of a stable RecA-ssDNA filament.


Asunto(s)
Proteínas de Unión al ADN/química , ADN Polimerasa Dirigida por ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Rec A Recombinasas/química , ADN Bacteriano/biosíntesis , ADN Bacteriano/química , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Rec A Recombinasas/metabolismo
10.
Annu Rev Biochem ; 87: 217-238, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29298091

RESUMEN

Accurate transmission of the genetic information requires complete duplication of the chromosomal DNA each cell division cycle. However, the idea that replication forks would form at origins of DNA replication and proceed without impairment to copy the chromosomes has proven naive. It is now clear that replication forks stall frequently as a result of encounters between the replication machinery and template damage, slow-moving or paused transcription complexes, unrelieved positive superhelical tension, covalent protein-DNA complexes, and as a result of cellular stress responses. These stalled forks are a major source of genome instability. The cell has developed many strategies for ensuring that these obstructions to DNA replication do not result in loss of genetic information, including DNA damage tolerance mechanisms such as lesion skipping, whereby the replisome jumps the lesion and continues downstream; template switching both behind template damage and at the stalled fork; and the error-prone pathway of translesion synthesis.


Asunto(s)
Daño del ADN , Reparación del ADN , Replicación del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Inestabilidad Genómica , Humanos , Modelos Biológicos
11.
J Biol Chem ; 292(41): 16921-16932, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-28842485

RESUMEN

The bacterial condensin MukB and the cellular decatenating enzyme topoisomerase IV interact. This interaction stimulates intramolecular reactions catalyzed by topoisomerase IV, supercoiled DNA relaxation, and DNA knotting but not intermolecular reactions such as decatenation of linked DNAs. We have demonstrated previously that MukB condenses DNA by sequestering negative supercoils and stabilizing topologically isolated loops in the DNA. We show here that the MukB-topoisomerase IV interaction stabilizes MukB on DNA, increasing the extent of DNA condensation without increasing the amount of MukB bound to the DNA. This effect does not require the catalytic activity of topoisomerase IV. Cells carrying a mukB mutant allele that encodes a protein that does not interact with topoisomerase IV exhibit severe nucleoid decompaction leading to chromosome segregation defects. These findings suggest that the MukB-topoisomerase IV complex may provide a scaffold for DNA condensation.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Cromosomas Bacterianos/química , Topoisomerasa de ADN IV/química , ADN Bacteriano/química , ADN Superhelicoidal/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Complejos Multiproteicos/química , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Topoisomerasa de ADN IV/genética , Topoisomerasa de ADN IV/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Superhelicoidal/genética , ADN Superhelicoidal/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación
12.
J Biol Chem ; 292(41): 16904-16920, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-28842486

RESUMEN

MukB is a structural maintenance of chromosome-like protein required for DNA condensation. The complete condensin is a large tripartite complex of MukB, the kleisin, MukF, and an accessory protein, MukE. As found previously, MukB DNA condensation is a stepwise process. We have defined these steps topologically. They proceed first via the formation of negative supercoils that are sequestered by the protein followed by hinge-hinge interactions between MukB dimers that stabilize topologically isolated loops in the DNA. MukB itself is sufficient to mediate both of these topological alterations; neither ATP nor MukEF is required. We show that the MukB hinge region binds DNA and that this region of the protein is involved in sequestration of supercoils. Cells carrying mutations in the MukB hinge that reduce DNA condensation in vitro exhibit nucleoid decondensation in vivo.


Asunto(s)
Proteínas Cromosómicas no Histona/química , ADN Bacteriano/química , ADN Superhelicoidal/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Multimerización de Proteína , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Superhelicoidal/genética , ADN Superhelicoidal/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
13.
Cell ; 169(7): 1201-1213.e17, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28622507

RESUMEN

It has been assumed that DNA synthesis by the leading- and lagging-strand polymerases in the replisome must be coordinated to avoid the formation of significant gaps in the nascent strands. Using real-time single-molecule analysis, we establish that leading- and lagging-strand DNA polymerases function independently within a single replisome. Although average rates of DNA synthesis on leading and lagging strands are similar, individual trajectories of both DNA polymerases display stochastically switchable rates of synthesis interspersed with distinct pauses. DNA unwinding by the replicative helicase may continue during such pauses, but a self-governing mechanism, where helicase speed is reduced by ∼80%, permits recoupling of polymerase to helicase. These features imply a more dynamic, kinetically discontinuous replication process, wherein contacts within the replisome are continually broken and reformed. We conclude that the stochastic behavior of replisome components ensures complete DNA duplication without requiring coordination of leading- and lagging-strand synthesis. PAPERCLIP.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/metabolismo , ADN Helicasas/metabolismo , Escherichia coli/enzimología , Microscopía Fluorescente/métodos , Modelos Biológicos , Replicón
14.
J Biol Chem ; 292(33): 13833-13842, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28642369

RESUMEN

Genome integrity relies on the ability of the replisome to navigate ubiquitous DNA damage during DNA replication. The Escherichia coli replisome transiently stalls at leading-strand template lesions and can either reinitiate replication downstream of the lesion or recruit specialized DNA polymerases that can bypass the lesion via translesion synthesis. Previous results had suggested that the E. coli replicase might play a role in lesion bypass, but this possibility has not been tested in reconstituted DNA replication systems. We report here that the DNA polymerase III holoenzyme in a stalled E. coli replisome can directly bypass a single cyclobutane pyrimidine dimer or abasic site by translesion synthesis in the absence of specialized translesion synthesis polymerases. Bypass efficiency was proportional to deoxynucleotide concentrations equivalent to those found in vivo and was dependent on the frequency of primer synthesis downstream of the lesion. Translesion synthesis came at the expense of lesion-skipping replication restart. Replication of a cyclobutane pyrimidine dimer was accurate, whereas replication of an abasic site resulted in mainly -1 frameshifts. Lesion bypass was accompanied by an increase in base substitution frequency for the base preceding the lesion. These findings suggest that DNA damage at the replication fork can be replicated directly by the replisome without the need to activate error-prone pathways.


Asunto(s)
Roturas del ADN de Cadena Simple , ADN Polimerasa III/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Complejos Multienzimáticos/metabolismo , ADN Polimerasa III/genética , ADN Bacteriano/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Mutación del Sistema de Lectura , Furanos/química , Furanos/metabolismo , Holoenzimas/genética , Holoenzimas/metabolismo , Complejos Multienzimáticos/genética , Multimerización de Proteína , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo , Origen de Réplica
15.
J Biol Chem ; 291(46): 23999-24008, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27697840

RESUMEN

Properly condensed chromosomes are necessary for accurate segregation of the sisters after DNA replication. The Escherichia coli condesin is MukB, a structural maintenance of chromosomes (SMC)-like protein, which forms a complex with MukE and the kleisin MukF. MukB is known to be able to mediate knotting of a DNA ring, an intramolecular reaction. In our investigations of how MukB condenses DNA we discovered that it can also mediate catenation of two DNA rings, an intermolecular reaction. This activity of MukB requires DNA binding by the head domains of the protein but does not require either ATP or its partner proteins MukE or MukF. The ability of MukB to mediate DNA catenation underscores its potential for bringing distal regions of a chromosome together.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ADN Bacteriano/metabolismo , ADN Encadenado/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Represoras/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Encadenado/química , ADN Encadenado/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas Represoras/química , Proteínas Represoras/genética
16.
J Biomol Tech ; 27(2): 61-74, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27006647

RESUMEN

In recent history, alternative approaches to Edman sequencing have been investigated, and to this end, the Association of Biomolecular Resource Facilities (ABRF) Protein Sequencing Research Group (PSRG) initiated studies in 2014 and 2015, looking into bottom-up and top-down N-terminal (Nt) dimethyl derivatization of standard quantities of intact proteins with the aim to determine Nt sequence information. We have expanded this initiative and used low picomole amounts of myoglobin to determine the efficiency of Nt-dimethylation. Application of this approach on protein domains, generated by limited proteolysis of overexpressed proteins, confirms that it is a universal labeling technique and is very sensitive when compared with Edman sequencing. Finally, we compared Edman sequencing and Nt-dimethylation of the same polypeptide fragments; results confirm that there is agreement in the identity of the Nt amino acid sequence between these 2 methods.


Asunto(s)
Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos , Animales , Caballos , Mioglobina/química , Análisis de Secuencia de Proteína/normas , Coloración y Etiquetado , Espectrometría de Masas en Tándem
17.
J Biol Chem ; 289(47): 32811-23, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25301949

RESUMEN

A number of different enzymatic pathways have evolved to ensure that DNA replication can proceed past template base damage. These pathways include lesion skipping by the replisome, replication fork regression followed by either correction of the damage and origin-independent replication restart or homologous recombination-mediated restart of replication downstream of the lesion, and bypass of the damage by a translesion synthesis DNA polymerase. We report here that of two translesion synthesis polymerases tested, only DNA polymerase IV, not DNA polymerase II, could engage productively with the Escherichia coli replisome to bypass leading strand template damage, despite the fact that both enzymes are shown to be interacting with the replicase. Inactivation of the 3' → 5' proofreading exonuclease of DNA polymerase II did not enable bypass. Bypass by DNA polymerase IV required its ability to interact with the ß clamp and act as a translesion polymerase but did not require its "little finger" domain, a secondary region of interaction with the ß clamp. Bypass by DNA polymerase IV came at the expense of the inherent leading strand lesion skipping activity of the replisome, indicating that they are competing reactions.


Asunto(s)
Daño del ADN , Reparación del ADN/genética , Replicación del ADN/genética , Origen de Réplica/genética , Biocatálisis , ADN Polimerasa II/metabolismo , ADN Polimerasa beta/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Genéticos , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Unión Proteica , Moldes Genéticos
18.
J Biol Chem ; 289(41): 28376-87, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25138216

RESUMEN

The orderly progression of replication forks formed at the origin of replication in Escherichia coli is challenged by encounters with template damage, slow moving RNA polymerases, and frozen DNA-protein complexes that stall the fork. These stalled forks are foci for genomic instability and must be reactivated. Many models of replication fork reactivation invoke nascent strand regression as an intermediate in the processing of the stalled fork. We have investigated the replication fork regression activity of RecG and RuvAB, two proteins commonly thought to be involved in the process, using a reconstituted DNA replication system where the replisome is stalled by collision with leading-strand template damage. We find that both RecG and RuvAB can regress the stalled fork in the presence of the replisome and SSB; however, RuvAB generates a completely unwound product consisting of the paired nascent leading and lagging strands, whereas RuvC cleaves the Holliday junction generated by RecG-catalyzed fork regression. We also find that RecG stimulates RuvAB-catalyzed regression, presumably because it is more efficient at generating the initial Holliday junction from the stalled fork.


Asunto(s)
Proteínas Bacterianas/genética , ADN Helicasas/genética , ADN Cruciforme/metabolismo , Endodesoxirribonucleasas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Roturas del ADN de Cadena Simple , División del ADN , ADN Helicasas/metabolismo , Replicación del ADN , Endodesoxirribonucleasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Inestabilidad Genómica
19.
J Biol Chem ; 289(41): 28388-98, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25138217

RESUMEN

Stalled replication forks are sites of chromosome breakage and the formation of toxic recombination intermediates that undermine genomic stability. Thus, replication fork repair and reactivation are essential processes. Among the many models of replication fork reactivation is one that invokes fork regression catalyzed by the strand exchange protein RecA as an intermediate in the processing of the stalled fork. We have investigated the replication fork regression activity of RecA using a reconstituted DNA replication system where the replisome is stalled by collision with leading-strand template damage. We find that RecA is unable to regress the stalled fork in the presence of the replisome and SSB. If the replication proteins are removed from the stalled fork, RecA will catalyze net regression as long as the Okazaki fragments are sealed. RecA-generated Holliday junctions can be detected by RuvC cleavage, although this is not a robust reaction. On the other hand, extensive branch migration by RecA, where a completely unwound product consisting of the paired nascent leading and lagging strands is produced, is observed under conditions where RuvC activity is suppressed. This branch migration reaction is inhibited by SSB, possibly accounting for the failure of RecA to generate products in the presence of the replication proteins. Interestingly, we find that the RecA-RuvC reaction is supported to differing extents, depending on the template damage; templates carrying a cyclopyrimidine dimer elicit more RecA-RuvC product than those carrying a synthetic abasic site. This difference could be ascribed to a higher affinity of RecA binding to DNAs carrying a thymidine dimer than to those with an abasic site.


Asunto(s)
ADN Cruciforme/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Rec A Recombinasas/genética , Biocatálisis , ADN , Roturas del ADN de Cadena Simple , División del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Inestabilidad Genómica , Unión Proteica , Rec A Recombinasas/metabolismo
20.
Mol Cell ; 52(6): 855-65, 2013 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-24268579

RESUMEN

The E. coli replisome stalls transiently when it encounters a lesion in the leading-strand template, skipping over the damage by reinitiating replication at a new primer synthesized downstream by the primase. We report here that template unwinding and lagging-strand synthesis continue downstream of the lesion at a reduced rate after replisome stalling, that one replisome is capable of skipping multiple lesions, and that the rate-limiting steps of replication restart involve the synthesis and activation of the new primer downstream. We also find little support for the concept that polymerase uncoupling, where extensive lagging-strand synthesis proceeds downstream in the absence of leading-strand synthesis, involves physical separation of the leading-strand polymerase from the replisome. Instead, our data indicate that extensive uncoupled replication likely results from a failure of the leading-strand polymerase still associated with the DNA helicase and the lagging-strand polymerase that are proceeding downstream to reinitiate synthesis.


Asunto(s)
Daño del ADN , Momento de Replicación del ADN , ADN Bacteriano/biosíntesis , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas Bacterianas/metabolismo , ADN Polimerasa III/metabolismo , ADN Primasa/metabolismo , ADN Polimerasa Dirigida por ADN/genética , AdnB Helicasas/metabolismo , Escherichia coli/genética , Cinética , Complejos Multienzimáticos/genética , Unión Proteica , Moldes Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...