Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
HLA ; 103(1): e15177, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37528739

RESUMEN

Genetically determined variation of killer cell immunoglobulin like receptors (KIR) and their HLA class I ligands affects multiple aspects of human health. Their extreme diversity is generated through complex interplay of natural selection for pathogen resistance and reproductive health, combined with demographic structure and dispersal. Despite significant importance to multiple health conditions of differential effect across populations, the nature and extent of immunogenetic diversity is under-studied for many geographic regions. Here, we describe the first high-resolution analysis of KIR and HLA class I combinatorial diversity in Northern Africa. Analysis of 125 healthy unrelated individuals from Cairo in Egypt yielded 186 KIR alleles arranged in 146 distinct centromeric and 79 distinct telomeric haplotypes. The most frequent haplotypes observed were KIR-A, encoding two inhibitory receptors specific for HLA-C, two that are specific for HLA-A and -B, and no activating receptors. Together with 141 alleles of HLA class I, 75 of which encode a KIR ligand, we identified a mean of six distinct interacting pairs of inhibitory KIR and HLA allotypes per individual. We additionally characterize 16 KIR alleles newly identified in the study population. Our findings place Egyptians as one of the most highly diverse populations worldwide, with important implications for transplant matching and studies of immune-mediated diseases.


Asunto(s)
Multimorbilidad , Pueblo Norteafricano , Receptores KIR , Humanos , Egipto , Estudios Transversales , Alelos , Receptores KIR/genética , Haplotipos
2.
HLA ; 103(1): e15251, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37850268

RESUMEN

Extreme polymorphism of HLA and killer-cell immunoglobulin-like receptors (KIR) differentiates immune responses across individuals. Additional to T cell receptor interactions, subsets of HLA class I act as ligands for inhibitory and activating KIR, allowing natural killer (NK) cells to detect and kill infected cells. We investigated the impact of HLA and KIR polymorphism on the severity of COVID-19. High resolution HLA class I and II and KIR genotypes were determined from 403 non-hospitalized and 1575 hospitalized SARS-CoV-2 infected patients from Italy collected in 2020. We observed that possession of the activating KIR2DS4*001 allotype is associated with severe disease, requiring hospitalization (OR = 1.48, 95% CI 1.20-1.85, pc = 0.017), and this effect is greater in individuals homozygous for KIR2DS4*001 (OR = 3.74, 95% CI 1.75-9.29, pc = 0.003). We also observed the HLA class II allotype, HLA-DPB1*13:01 protects SARS-CoV-2 infected patients from severe disease (OR = 0.49, 95% CI 0.33-0.74, pc = 0.019). These association analyses were replicated using logistic regression with sex and age as covariates. Autoantibodies against IFN-α associated with COVID-19 severity were detected in 26% of 156 hospitalized patients tested. HLA-C*08:02 was more frequent in patients with IFN-α autoantibodies than those without, and KIR3DL1*01502 was only present in patients lacking IFN-α antibodies. These findings suggest that KIR and HLA polymorphism is integral in determining the clinical outcome following SARS-CoV-2 infection, by influencing the course both of innate and adaptive immunity.


Asunto(s)
COVID-19 , Cadenas beta de HLA-DP , Humanos , COVID-19/genética , SARS-CoV-2/genética , Alelos , Receptores KIR/genética , Genotipo , Autoanticuerpos/genética
3.
HLA ; 103(1): e15273, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37899688

RESUMEN

The complement component 4 gene loci, composed of the C4A and C4B genes and located on chromosome 6, encodes for complement component 4 (C4) proteins, a key intermediate in the classical and lectin pathways of the complement system. The complement system is an important modulator of immune system activity and is also involved in the clearance of immune complexes and cellular debris. C4A and C4B gene loci exhibit copy number variation, with each composite gene varying between 0 and 5 copies per haplotype. C4A and C4B genes also vary in size depending on the presence of the human endogenous retrovirus (HERV) in intron 9, denoted by C4(L) for long-form and C4(S) for short-form, which affects expression and is found in both C4A and C4B. Additionally, human blood group antigens Rodgers and Chido are located on the C4 protein, with the Rodger epitope generally found on C4A protein, and the Chido epitope generally found on C4B protein. C4A and C4B copy number variation has been implicated in numerous autoimmune and pathogenic diseases. Despite the central role of C4 in immune function and regulation, high-throughput genomic sequence analysis of C4A and C4B variants has been impeded by the high degree of sequence similarity and complex genetic variation exhibited by these genes. To investigate C4 variation using genomic sequencing data, we have developed a novel bioinformatic pipeline for comprehensive, high-throughput characterization of human C4A and C4B sequences from short-read sequencing data, named C4Investigator. Using paired-end targeted or whole genome sequence data as input, C4Investigator determines the overall gene copy numbers, as well as C4A, C4B, C4(Rodger), C4(Ch), C4(L), and C4(S). Additionally, C4Ivestigator reports the full overall C4A and C4B aligned sequence, enabling nucleotide level analysis. To demonstrate the utility of this workflow we have analyzed C4A and C4B variation in the 1000 Genomes Project Data set, showing that these genes are highly poly-allelic with many variants that have the potential to impact C4 protein function.


Asunto(s)
Complemento C4b , Variaciones en el Número de Copia de ADN , Humanos , Complemento C4b/genética , Alelos , Complemento C4/genética , Genómica , Análisis de Secuencia , Epítopos
4.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37503256

RESUMEN

The complement component 4 gene locus, composed of the C4A and C4B genes and located on chromosome 6, encodes for C4 protein, a key intermediate in the classical and lectin pathways of the complement system. The complement system is an important modulator of immune system activity and is also involved in the clearance of immune complexes and cellular debris. The C4 gene locus exhibits copy number variation, with each composite gene varying between 0-5 copies per haplotype, C4 genes also vary in size depending on the presence of the HERV retrovirus in intron 9, denoted by C4(L) for long-form and C4(S) for short-form, which modulates expression and is found in both C4A and C4B. Additionally, human blood group antigens Rodgers and Chido are located on the C4 protein, with the Rodger epitope generally found on C4A protein, and the Chido epitope generally found on C4B protein. C4 copy number variation has been implicated in numerous autoimmune and pathogenic diseases. Despite the central role of C4 in immune function and regulation, high-throughput genomic sequence analysis of C4 variants has been impeded by the high degree of sequence similarity and complex genetic variation exhibited by these genes. To investigate C4 variation using genomic sequencing data, we have developed a novel bioinformatic pipeline for comprehensive, high-throughput characterization of human C4 sequence from short-read sequencing data, named C4Investigator. Using paired-end targeted or whole genome sequence data as input, C4Investigator determines gene copy number for overall C4, C4A, C4B, C4(Rodger), C4(Ch), C4(L), and C4(S), additionally, C4Ivestigator reports the full overall C4 aligned sequence, enabling nucleotide level analysis of C4. To demonstrate the utility of this workflow we have analyzed C4 variation in the 1000 Genomes Project Dataset, showing that the C4 genes are highly poly-allelic with many variants that have the potential to impact C4 protein function.

5.
HLA ; 101(5): 441-448, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36565030

RESUMEN

Here, we demonstrate improvements to our bioinformatic pipeline, PING, which provides high-resolution genotyping of killer-cell immunoglobulin-like receptor (KIR) sequencing data, that expand the method to provide KIR interpretation from whole genome sequencing (WGS) data. We evaluated performance using synthetic sequence datasets and real-world data from the 1000 Genomes Project (1KGP). PING demonstrated high exonic genotyping performance on the synthetic sequence dataset meant to approximate real-world data at 95% accuracy (N = 1366). This result was mirrored in the analysis of 1KGP European data (N = 215) with most genes showing near or below 5% frequency of unresolved exonic genotypes, which is an important indicator for genotyping errors in real-world data. An analysis into the distributions of genotyping errors for the synthetic sequence datasets gave insights into how to further improve genotype accuracy. Similarly, an analysis into ambiguous exonic genotype frequencies for the 1KGP European data, which showed high rates of unresolved genotypes, highlighted that an effective phasing method will be an impactful future additional to the PING workflow. Together, these results demonstrate that PING can effectively provide high-resolution KIR genotyping on WGS data.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Alelos , Genotipo , Receptores KIR/genética , Inmunoglobulinas/genética
6.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34633459

RESUMEN

The killer-cell immunoglobulin-like receptors (KIR) recognize human leukocyte antigen (HLA) molecules to regulate the cytotoxic and inflammatory responses of natural killer cells. KIR genes are encoded by a rapidly evolving gene family on chromosome 19 and present an unusual variation of presence and absence of genes and high allelic diversity. Although many studies have associated KIR polymorphism with susceptibility to several diseases over the last decades, the high-resolution allele-level haplotypes have only recently started to be described in populations. Here, we use a highly innovative custom next-generation sequencing method that provides a state-of-art characterization of KIR and HLA diversity in 706 individuals from eight unique South American populations: five Amerindian populations from Brazil (three Guarani and two Kaingang); one Amerindian population from Paraguay (Aché); and two urban populations from Southern Brazil (European and Japanese descendants from Curitiba). For the first time, we describe complete high-resolution KIR haplotypes in South American populations, exploring copy number, linkage disequilibrium, and KIR-HLA interactions. We show that all Amerindians analyzed to date exhibit the lowest numbers of KIR-HLA interactions among all described worldwide populations, and that 83-97% of their KIR-HLA interactions rely on a few HLA-C molecules. Using multiple approaches, we found signatures of strong purifying selection on the KIR centromeric region, which codes for the strongest NK cell educator receptors, possibly driven by the limited HLA diversity in these populations. Our study expands the current knowledge of KIR genetic diversity in populations to understand KIR-HLA coevolution and its impact on human health and survival.


Asunto(s)
Antígenos HLA , Indígenas Sudamericanos/genética , Receptores KIR , Alelos , Frecuencia de los Genes , Genética de Población , Antígenos HLA/genética , Haplotipos , Humanos , Desequilibrio de Ligamiento , Receptores KIR/genética , Selección Genética
7.
PLoS Comput Biol ; 17(8): e1008904, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34339413

RESUMEN

The killer-cell immunoglobulin-like receptor (KIR) complex on chromosome 19 encodes receptors that modulate the activity of natural killer cells, and variation in these genes has been linked to infectious and autoimmune disease, as well as having bearing on pregnancy and transplant outcomes. The medical relevance and high variability of KIR genes makes short-read sequencing an attractive technology for interrogating the region, providing a high-throughput, high-fidelity sequencing method that is cost-effective. However, because this gene complex is characterized by extensive nucleotide polymorphism, structural variation including gene fusions and deletions, and a high level of homology between genes, its interrogation at high resolution has been thwarted by bioinformatic challenges, with most studies limited to examining presence or absence of specific genes. Here, we present the PING (Pushing Immunogenetics to the Next Generation) pipeline, which incorporates empirical data, novel alignment strategies and a custom alignment processing workflow to enable high-throughput KIR sequence analysis from short-read data. PING provides KIR gene copy number classification functionality for all KIR genes through use of a comprehensive alignment reference. The gene copy number determined per individual enables an innovative genotype determination workflow using genotype-matched references. Together, these methods address the challenges imposed by the structural complexity and overall homology of the KIR complex. To determine copy number and genotype determination accuracy, we applied PING to European and African validation cohorts and a synthetic dataset. PING demonstrated exceptional copy number determination performance across all datasets and robust genotype determination performance. Finally, an investigation into discordant genotypes for the synthetic dataset provides insight into misaligned reads, advancing our understanding in interpretation of short-read sequencing data in complex genomic regions. PING promises to support a new era of studies of KIR polymorphism, delivering high-resolution KIR genotypes that are highly accurate, enabling high-quality, high-throughput KIR genotyping for disease and population studies.


Asunto(s)
Inmunogenética/estadística & datos numéricos , Receptores KIR/genética , África Austral , Alelos , Biología Computacional , Simulación por Computador , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Europa (Continente) , Dosificación de Gen , Genética de Población/estadística & datos numéricos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Humanos , Polimorfismo Genético , Receptores KIR/clasificación , Alineación de Secuencia/estadística & datos numéricos , Diseño de Software
8.
J Immunol ; 206(12): 3064-3072, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34117109

RESUMEN

In the treatment of acute myelogenous leukemia with allogeneic hematopoietic cell transplantation, we previously demonstrated that there is a greater protection from relapse of leukemia when the hematopoietic cell transplantation donor has either the Cen B/B KIR genotype or a genotype having two or more KIR B gene segments. In those earlier analyses, KIR genotyping could only be assessed at the low resolution of gene presence or absence. To give the analysis greater depth, we developed high-resolution KIR sequence-based typing that defines all the KIR alleles and distinguishes the expressed alleles from those that are not expressed. We now describe and analyze high-resolution KIR genotypes for 890 donors of this human transplant cohort. Cen B01 and Cen B02 are the common CenB haplotypes, with Cen B02 having evolved from Cen B01 by deletion of the KIR2DL5, 2DS3/5, 2DP1, and 2DL1 genes. We observed a consistent trend for Cen B02 to provide stronger protection against relapse than Cen B01 This correlation indicates that protection depends on the donor having inhibitory KIR2DL2 and/or activating KIR2DS2, and is enhanced by the donor lacking inhibitory KIR2DL1, 2DL3, and 3DL1. High-resolution KIR typing has allowed us to compare the strength of the interactions between the recipient's HLA class I and the KIR expressed by the donor-derived NK cells and T cells, but no clinically significant interactions were observed. The trend observed between donor Cen B02 and reduced relapse of leukemia points to the value of studying ever larger transplant cohorts.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Genotipo , Antígenos HLA , Humanos , Leucemia Mieloide Aguda/genética , Receptores KIR/genética , Recurrencia
9.
Front Immunol ; 12: 674778, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025673

RESUMEN

The KIR (killer-cell immunoglobulin-like receptor) region is characterized by structural variation and high sequence similarity among genes, imposing technical difficulties for analysis. We undertook the most comprehensive study to date of KIR genetic diversity in a large population sample, applying next-generation sequencing in 2,130 United States European-descendant individuals. Data were analyzed using our custom bioinformatics pipeline specifically designed to address technical obstacles in determining KIR genotypes. Precise gene copy number determination allowed us to identify a set of uncommon gene-content KIR haplotypes accounting for 5.2% of structural variation. In this cohort, KIR2DL4 is the framework gene that most varies in copy number (6.5% of all individuals). We identified phased high-resolution alleles in large multi-locus insertions and also likely founder haplotypes from which they were deleted. Additionally, we observed 250 alleles at 5-digit resolution, of which 90 have frequencies ≥1%. We found sequence patterns that were consistent with the presence of novel alleles in 398 (18.7%) individuals and contextualized multiple orphan dbSNPs within the KIR complex. We also identified a novel KIR2DL1 variant, Pro151Arg, and demonstrated by molecular dynamics that this substitution is predicted to affect interaction with HLA-C. No previous studies have fully explored the full range of structural and sequence variation of KIR as we present here. We demonstrate that pairing high-throughput sequencing with state-of-art computational tools in a large cohort permits exploration of all aspects of KIR variation including determination of population-level haplotype diversity, improving understanding of the KIR system, and providing an important reference for future studies.


Asunto(s)
Variación Estructural del Genoma/genética , Receptores Inmunológicos/genética , Receptores KIR/genética , Alelos , Estudios de Cohortes , Genotipo , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , América del Norte , Polimorfismo Genético , Polimorfismo de Nucleótido Simple , Población Blanca/genética
10.
Front Immunol ; 11: 1881, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983108

RESUMEN

Regulation of NK cell activity is mediated through killer-cell immunoglobulin-like receptors (KIR) ability to recognize human leukocyte antigen (HLA) class I molecules as ligands. Interaction of KIR and HLA is implicated in viral infections, autoimmunity, and reproduction and there is growing evidence of the coevolution of these two independently segregating gene families. By leveraging KIR and HLA-C data from 1000 Genomes consortium we observed that the KIR2DL1 variant rs2304224*T is associated with lower expression of HLA-C in individuals carrying the ligand HLA-C2 (p = 0.0059). Using flow cytometry, we demonstrated that this variant is also associated with higher expression of KIR2DL1 on the NK cell surface (p = 0.0002). Next, we applied next generation sequencing to analyze KIR2DL1 sequence variation in 109 Euro and 75 Japanese descendants. Analyzing the extended haplotype homozygosity, we show signals of positive selection for rs4806553*G and rs687000*G, which are in linkage disequilibrium with rs2304224*T. Our results suggest that lower expression of HLA-C2 ligands might be compensated for higher expression of the receptor KIR2DL1 and bring new insights into the coevolution of KIR and HLA.


Asunto(s)
Antígenos HLA-C/genética , Células Asesinas Naturales/inmunología , Receptores KIR2DL1/genética , Antígenos HLA-C/biosíntesis , Haplotipos , Humanos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple
11.
J Immunol ; 205(5): 1323-1330, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32709660

RESUMEN

Immune dysfunction plays a role in the development of Parkinson disease (PD). NK cells regulate immune functions and are modulated by killer cell immunoglobulin-like receptors (KIR). KIR are expressed on the surface of NK cells and interact with HLA class I ligands on the surface of all nucleated cells. We investigated KIR-allelic polymorphism to interrogate the role of NK cells in PD. We sequenced KIR genes from 1314 PD patients and 1978 controls using next-generation methods and identified KIR genotypes using custom bioinformatics. We examined associations of KIR with PD susceptibility and disease features, including age at disease onset and clinical symptoms. We identified two KIR3DL1 alleles encoding highly expressed inhibitory receptors associated with protection from PD clinical features in the presence of their cognate ligand: KIR3DL1*015/HLA-Bw4 from rigidity (p c = 0.02, odds ratio [OR] = 0.39, 95% confidence interval [CI] 0.23-0.69) and KIR3DL1*002/HLA-Bw4i from gait difficulties (p c = 0.05, OR = 0.62, 95% CI 0.44-0.88), as well as composite symptoms associated with more severe disease. We also developed a KIR3DL1/HLA interaction strength metric and found that weak KIR3DL1/HLA interactions were associated with rigidity (pc = 0.05, OR = 9.73, 95% CI 2.13-172.5). Highly expressed KIR3DL1 variants protect against more debilitating symptoms of PD, strongly implying a role of NK cells in PD progression and manifestation.


Asunto(s)
Enfermedad de Parkinson/genética , Polimorfismo Genético/genética , Receptores KIR3DL1/genética , Alelos , Femenino , Genotipo , Antígenos HLA-B/genética , Humanos , Células Asesinas Naturales/metabolismo , Ligandos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
12.
Front Immunol ; 11: 556, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32300348

RESUMEN

Natural killer (NK) cells are innate lymphocytes that eliminate infected and transformed cells. They discriminate healthy from diseased tissue through killer cell Ig-like receptor (KIR) recognition of HLA class I ligands. Directly impacting NK cell function, KIR polymorphism associates with infection control and multiple autoimmune and pregnancy syndromes. Here we analyze KIR diversity of 241 individuals from five groups of Iranians. These five populations represent Baloch, Kurd, and Lur, together comprising 15% of the ethnically diverse Iranian population. We identified 159 KIR alleles, including 11 not previously characterized. We also identified 170 centromeric and 94 telomeric haplotypes, and 15 different KIR haplotypes carrying either a deletion or duplication encompassing one or more complete KIR genes. As expected, comparing our data with those representing major worldwide populations revealed the greatest similarity between Iranians and Europeans. Despite this similarity we observed higher frequencies of KIR3DL1*001 in Iran than any other population, and the highest frequency of HLA-B*51, a Bw4-containing allotype that acts as a strong educator of KIR3DL1*001+ NK cells. Compared to Europeans, the Iranians we studied also have a reduced frequency of 3DL1*004, which encodes an allotype that is not expressed at the NK cell surface. Concurrent with the resulting high frequency of strong viable interactions between inhibitory KIR and polymorphic HLA class I, the majority of KIR-A haplotypes characterized do not express a functional activating receptor. By contrast, the most frequent KIR-B haplotype in Iran expresses only one functional inhibitory KIR and the maximum number of activating KIR. This first complete, high-resolution, characterization of the KIR locus of Iranians will form a valuable reference for future clinical and population studies.


Asunto(s)
Células Asesinas Naturales/inmunología , Receptores KIR/genética , Alelos , Árabes/genética , Haplotipos , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Irán , Polimorfismo Genético/genética , Polimorfismo Genético/inmunología
13.
Proc Natl Acad Sci U S A ; 116(15): 7419-7424, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30910980

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease in which genetic risk has been mapped to HLA, but precise allelic associations have been difficult to infer due to limitations in genotyping methodology. Mapping PD risk at highest possible resolution, we performed sequencing of 11 HLA genes in 1,597 PD cases and 1,606 controls. We found that susceptibility to PD can be explained by a specific combination of amino acids at positions 70-74 on the HLA-DRB1 molecule. Previously identified as the primary risk factor in rheumatoid arthritis and referred to as the "shared epitope" (SE), the residues Q/R-K/R-R-A-A at positions 70-74 in combination with valine at position 11 (11-V) is highly protective in PD, while risk is attributable to the identical epitope in the absence of 11-V. Notably, these effects are modified by history of cigarette smoking, with a strong protective effect mediated by a positive history of smoking in combination with the SE and 11-V (P = 10-4; odds ratio, 0.51; 95% confidence interval, 0.36-0.72) and risk attributable to never smoking in combination with the SE without 11-V (P = 0.01; odds ratio, 1.51; 95% confidence interval, 1.08-2.12). The association of specific combinations of amino acids that participate in critical peptide-binding pockets of the HLA class II molecule implicates antigen presentation in PD pathogenesis and provides further support for genetic control of neuroinflammation in disease. The interaction of HLA-DRB1 with smoking history in disease predisposition, along with predicted patterns of peptide binding to HLA, provide a molecular model that explains the unique epidemiology of smoking in PD.


Asunto(s)
Genotipo , Cadenas HLA-DRB1/química , Cadenas HLA-DRB1/genética , Modelos Moleculares , Enfermedad de Parkinson/genética , Fumar/genética , Secuencias de Aminoácidos , Femenino , Técnicas de Genotipaje , Humanos , Masculino , Factores de Riesgo
14.
Front Immunol ; 9: 2843, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564239

RESUMEN

The killer-cell immunoglobulin-like receptor (KIR) genes regulate natural killer cell activity, influencing predisposition to immune mediated disease, and affecting hematopoietic stem cell transplantation (HSCT) outcome. Owing to the complexity of the KIR locus, with extensive gene copy number variation (CNV) and allelic diversity, high-resolution characterization of KIR has so far been applied only to relatively small cohorts. Here, we present a comprehensive high-throughput KIR genotyping approach based on next generation sequencing. Through PCR amplification of specific exons, our approach delivers both copy numbers of the individual genes and allelic information for every KIR gene. Ten-fold replicate analysis of a set of 190 samples revealed a precision of 99.9%. Genotyping of an independent set of 360 samples resulted in an accuracy of more than 99% taking into account consistent copy number prediction. We applied the workflow to genotype 1.8 million stem cell donor registry samples. We report on the observed KIR allele diversity and relative abundance of alleles based on a subset of more than 300,000 samples. Furthermore, we identified more than 2,000 previously unreported KIR variants repeatedly in independent samples, underscoring the large diversity of the KIR region that awaits discovery. This cost-efficient high-resolution KIR genotyping approach is now applied to samples of volunteers registering as potential donors for HSCT. This will facilitate the utilization of KIR as additional selection criterion to improve unrelated donor stem cell transplantation outcome. In addition, the approach may serve studies requiring high-resolution KIR genotyping, like population genetics and disease association studies.


Asunto(s)
Receptores KIR/genética , Algoritmos , Alelos , Variaciones en el Número de Copia de ADN/genética , Dosificación de Gen/genética , Genotipo , Trasplante de Células Madre Hematopoyéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Células Asesinas Naturales/inmunología , Flujo de Trabajo
15.
HLA ; 92(6): 384-391, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30468002

RESUMEN

Killer cell immunoglobulin-like receptor (KIR) genes encode cell surface molecules that recognize HLA molecules and modulate the activity of natural killer (NK) cells. KIR genes exhibit presence and absence polymorphism, which generates a variety of gene-content haplotypes in worldwide populations. KIR gene-content variation is implicated in many diseases and is also important for placentation and transplantation. Because of the complexity of KIR polymorphism, variation in this family is still mostly studied at the gene-content level, even with the advent of next-generation sequencing (NGS) methods. Gene-content determination is generally expensive and/or time-consuming. To overcome these difficulties, we developed a method based on multiplex polymerase chain reaction with specific sequence primers (PCR-SSP) followed by melting curve analysis that allows cost-effective, precise and fast generation of results. Our method was 100% concordant with a gel-based method and 99.9% concordant with presence and absence determination by NGS. The limit of detection for accurate typing was 30 ng of DNA (0.42 µM) with 260/230 and 260/280 ratios as low as 0.19 and of 0.44. In addition, we developed a user-friendly Java-based computational application called killerPeak that interprets the raw data generated by Viia7 or QuantStudio 7 quantitative PCR machines and reliably exports the final genotyping results in spreadsheet file format. The combination of a reliable method that requires low amount of DNA with an automated interpretation of results allows scaling the KIR genotyping in large cohorts with reduced turnaround time.


Asunto(s)
Genotipo , Técnicas de Genotipaje/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Polimorfismo Genético , Receptores KIR/genética , Cartilla de ADN/química , Cartilla de ADN/metabolismo , Expresión Génica , Técnicas de Genotipaje/economía , Técnicas de Genotipaje/instrumentación , Técnicas de Genotipaje/normas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Límite de Detección , Reacción en Cadena de la Polimerasa Multiplex/economía , Reacción en Cadena de la Polimerasa Multiplex/instrumentación , Reacción en Cadena de la Polimerasa Multiplex/normas , Desnaturalización de Ácido Nucleico , Receptores KIR/clasificación , Receptores KIR/inmunología , Programas Informáticos
16.
Biol Open ; 7(7)2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30037883

RESUMEN

Although the primary protein sequence of ubiquitin (Ub) is extremely stable over evolutionary time, it is highly tolerant to mutation during selection experiments performed in the laboratory. We have proposed that this discrepancy results from the difference between fitness under laboratory culture conditions and the selective pressures in changing environments over evolutionary timescales. Building on our previous work (Mavor et al., 2016), we used deep mutational scanning to determine how twelve new chemicals (3-Amino-1,2,4-triazole, 5-fluorocytosine, Amphotericin B, CaCl2, Cerulenin, Cobalt Acetate, Menadione, Nickel Chloride, p-Fluorophenylalanine, Rapamycin, Tamoxifen, and Tunicamycin) reveal novel mutational sensitivities of ubiquitin residues. Collectively, our experiments have identified eight new sensitizing conditions for Lys63 and uncovered a sensitizing condition for every position in Ub except Ser57 and Gln62. By determining the ubiquitin fitness landscape under different chemical constraints, our work helps to resolve the inconsistencies between deep mutational scanning experiments and sequence conservation over evolutionary timescales.

17.
Am J Hum Genet ; 99(2): 375-91, 2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27486779

RESUMEN

The physiological functions of natural killer (NK) cells in human immunity and reproduction depend upon diverse interactions between killer cell immunoglobulin-like receptors (KIRs) and their HLA class I ligands: HLA-A, HLA-B, and HLA-C. The genomic regions containing the KIR and HLA class I genes are unlinked, structurally complex, and highly polymorphic. They are also strongly associated with a wide spectrum of diseases, including infections, autoimmune disorders, cancers, and pregnancy disorders, as well as the efficacy of transplantation and other immunotherapies. To facilitate study of these extraordinary genes, we developed a method that captures, sequences, and analyzes the 13 KIR genes and HLA-A, HLA-B, and HLA-C from genomic DNA. We also devised a bioinformatics pipeline that attributes sequencing reads to specific KIR genes, determines copy number by read depth, and calls high-resolution genotypes for each KIR gene. We validated this method by using DNA from well-characterized cell lines, comparing it to established methods of HLA and KIR genotyping, and determining KIR genotypes from 1000 Genomes sequence data. This identified 116 previously uncharacterized KIR alleles, which were all demonstrated to be authentic by sequencing from source DNA via standard methods. Analysis of just two KIR genes showed that 22% of the 1000 Genomes individuals have a previously uncharacterized allele or a structural variant. The method we describe is suited to the large-scale analyses that are needed for characterizing human populations and defining the precise HLA and KIR factors associated with disease. The methods are applicable to other highly polymorphic genes.


Asunto(s)
Genes MHC Clase I/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Receptores KIR/genética , Alelos , Dosificación de Gen , Genoma Humano/genética , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Antígenos HLA-C/genética , Haplotipos , Humanos , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA