Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Nutrients ; 16(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38612971

RESUMEN

Crohn's and ulcerative colitis are common conditions associated with inflammatory bowel disease as well as intestinal flora and epithelial barrier dysfunction. A novel fermented Lactobacillus brevis (AL0035) herein assayed in a trinitro benzene sulfonic acid (TNBS)-induced colitis mice model after oral administration significantly counteracted the body weight loss and improves the disease activity index and histological injury scores. AL0035 significantly decreased the mRNA and protein expression of different pro-inflammatory cytokines (TNFalpha, IL-1beta, IL-6, IL-12, IFN-gamma) and enhanced the expression of IL-10. In addition, the probiotic promoted the expression of tight junction proteins, such as ZO-1, keeping the intestinal mucosal barrier function to attenuate colitis symptoms in mice. Markers of inflammation cascade such as myeloperoxidase (MPO) and PPAR-gamma measured in the colon were also modified by AL0035 treatment. AL0035 was also able to reduce different lymphocyte markers' infiltration in the colon (GATA-3, T-Bet, NK1.1) and monocyte chemoattractant protein-1 (MCP-1/CCL2), a key chemokine involved in the migration and infiltration of monocytes/macrophages in the immunological surveillance of tissues and inflammation. In colonic microbiota profile analysis through 16S rRNA sequencing, AL0035 increased the microbial diversity depleted by TNBS administration and the relative abundance of the Lactobacillaceae and Lachnospiraceae families, whereas it decreased the abundance of Proteobacteria. Altogether, these data indicated that AL0035 could lower the severity of colitis induced by TNBS by regulating inflammatory cytokines, increasing the expression of tight junction proteins and modulating intestinal microbiota, thus preventing tissue damage induced by colitis.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Levilactobacillus brevis , Humanos , Animales , Ratones , Verduras , ARN Ribosómico 16S , Colitis/inducido químicamente , Inflamación , Citocinas , Proteínas de Uniones Estrechas/genética
2.
Biol Direct ; 19(1): 11, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38268026

RESUMEN

BACKGROUND: To create a dual-acting vaccine that can fight against tuberculosis, we combined antigenic arabino-mannan analogues with the Ag85B protein. To start the process, we studied the impact of modifying different parts of the Ag85B protein on its ability to be recognized by antibodies. RESULTS: Through our research, we discovered that three modified versions of the protein, rAg85B-K30R, rAg85B-K282R, and rAg85B-K30R/K282R, retained their antibody reactivity in healthy individuals and those with tuberculosis. To further test the specificity of the sugar AraMan for AraMan antibodies, we used Human Serum Albumin glycosylated with AraMan-IME and Ara3Man-IME. Our findings showed that this specific sugar was fully and specifically modified. Bio-panning experiments revealed that patients with active tuberculosis exhibited a higher antibody response to Ara3Man, a sugar found in lipoarabinomannan (LAM), which is a major component of the mycobacterial cell wall. Bio-panning with anti-LAM plates could eliminate this increased response, suggesting that the enhanced Ara3Man response was primarily driven by antibodies targeting LAM. These findings highlight the importance of Ara3Man as an immunodominant epitope in LAM and support its role in eliciting protective immunity against tuberculosis. Further studies evaluated the effects of glycosylation on the antibody affinity of recombinant Ag85B and its variants. The results indicated that rAg85B-K30R/K282R, when conjugated with Ara3Man-IME, demonstrated enhanced antibody recognition compared to unconjugated or non-glycosylated versions. CONCLUSIONS: Coupling Ara3Man to rAg85B-K30R/K282R could lead to the development of effective dual-acting vaccines against tuberculosis, stimulating protective antibodies against both AraMan and Ag85B, two key tuberculosis antigens.


Asunto(s)
Tuberculosis , Vacunas , Humanos , Glicosilación , Tuberculosis/prevención & control , Azúcares
3.
Mol Aspects Med ; 94: 101225, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38000334

RESUMEN

In the last years, neuroprotective therapies have attracted the researcher interests as modern and challenging approach for the treatment of neurodegenerative diseases, aimed at protecting the nervous system from injuries. Glaucoma is a neurodegenerative disease characterized by progressive excavation of the optic nerve head, retinal axonal injury and corresponding vision loss that affects millions of people on a global scale. The molecular basis of the pathology is largely uncharacterized yet, and the therapeutic approaches available do not change the natural course of the disease. Therefore, in accordance with the therapeutic regimens proposed for other neurodegenerative diseases, a modern strategy to treat glaucoma includes prescription of drugs with neuroprotective activities. With respect to this, several preclinical and clinical investigations on a plethora of different drugs are currently ongoing. In this review, first, the conceptualization of the rationale for the adoption of neuroprotective strategies for retina is summarized. Second, the molecular aspects highlighting glaucoma as a neurodegenerative disease are reported. In conclusion, the molecular and pharmacological properties of most promising direct neuroprotective drugs used to delay glaucoma progression are examined, including: neurotrophic factors, NMDA receptor antagonists, the α2-adrenergic agonist, brimonidine, calcium channel blockers, antioxidant agents, nicotinamide and statins.


Asunto(s)
Glaucoma , Enfermedades Neurodegenerativas , Enfermedades de la Retina , Humanos , Enfermedades Neurodegenerativas/patología , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/fisiología , Glaucoma/tratamiento farmacológico , Glaucoma/patología , Tartrato de Brimonidina/uso terapéutico , Retina
4.
Biomolecules ; 13(10)2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37892174

RESUMEN

The insulin-degrading enzyme (IDE) is a Zn2+ peptidase originally discovered as the main enzyme involved in the degradation of insulin and other amyloidogenic peptides, such as the ß-amyloid (Aß) peptide. Therefore, a role for the IDE in the cure of diabetes and Alzheimer's disease (AD) has been long envisaged. Anyway, its role in degrading amyloidogenic proteins remains not clearly defined and, more recently, novel non-proteolytic functions of the IDE have been proposed. From a structural point of view, the IDE presents an atypical clamshell structure, underscoring unique enigmatic enzymological properties. A better understanding of the structure-function relationship may contribute to solving some existing paradoxes of IDE biology and, in light of its multifunctional activity, might lead to novel therapeutic approaches.


Asunto(s)
Enfermedad de Alzheimer , Insulisina , Humanos , Insulisina/química , Insulisina/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Proteínas Amiloidogénicas , Diseño de Fármacos
5.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686148

RESUMEN

Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Niño , Adulto Joven , Humanos , Fitoestrógenos/farmacología , Fitoestrógenos/uso terapéutico , Osteosarcoma/tratamiento farmacológico , Apoptosis , Estrógenos , Neoplasias Óseas/tratamiento farmacológico
6.
World J Psychiatry ; 13(5): 174-181, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37303931

RESUMEN

Deep brain stimulation (DBS) is a medical treatment that aims to obtain therapeutic effects by applying chronic electrical impulses in specific brain structures and neurological circuits. Over the years, DBS has been studied for the treatment of many psychiatric disorders. Scientific research on the use of DBS in people with autism has focused this interest mainly on treatment-resistant obsessive-compulsive disorder, drug-resistant epilepsy, self-injurious behaviors (SIB), and aggressive behaviors toward the self. Autism spectrum disorder (ASD) includes a group of developmental disabilities characterized by patterns of delay and deviance in the development of social, communicative, and cognitive skills and the presence of repetitive and stereotyped behaviors as well as restricted interests. People with autism often have numerous medical and psychiatric comorbidities that worsen the quality of life of patients and their caregivers. Obsessive-compulsive symptoms can be found in up to 81.3% of people with autism. They are often severe, refractory to treatment, and particularly difficult to treat. SIB has a high prevalence in severely retarded individuals and is often associated with autism. Drug treatment of both autism and SIB presents a therapeutic challenge. To describe the current state of the art regarding the efficacy of DBS in people with ASD, a literature search was conducted for relevant studies using the PubMed database. Thirteen studies have been considered in this paper. Up to date, DBS has been used for the stimulation of the nucleus accumbens, globus pallidus internus, anterior limb of the internal capsule, ventral anterior limb of the internal capsule, basolateral amygdala, ventral capsule and ventral striatum, medial forebrain bundle, and posterior hypothalamus. In the total sample of 16 patients, 4 were adolescents, and 12 were adults. All patients had symptoms resistant to multiple drug therapy. Many patients taken into consideration by the studies showed clinical improvements as evidenced by the scores of the psychopathological scales used. In some cases, clinical improvements have varied over time, which may require further investigation. Among the new therapeutic perspectives, DBS could be a valid option. However, further, and more in-depth research is needed in this field.

7.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37175397

RESUMEN

Recently, there has been an increasing focus on cellular morphology and mechanical behavior in order to gain a better understanding of the modulation of cell malignancy. This study used uniaxial-stretching technology to select a mechanical regimen able to elevate SAOS-2 cell migration, which is crucial in osteosarcoma cell pathology. Using confocal and atomic force microscopy, we demonstrated that a 24 h 0.5% cyclic elongation applied at 1 Hz induces morphological changes in cells. Following mechanical stimulation, the cell area enlarged, developing a more elongated shape, which disrupted the initial nuclear-to-cytoplasm ratio. The peripheral cell surface also increased its roughness. Cell-based biochemical assays and real-time PCR quantification showed that these morphologically induced changes are unrelated to the osteoblastic differentiative grade. Interestingly, two essential cell-motility properties in the modulation of the metastatic process changed following the 24 h 1 Hz mechanical stimulation. These were cell adhesion and cell migration, which, in fact, were dampened and enhanced, respectively. Notably, our results showed that the stretch-induced up-regulation of cell motility occurs through a mechanism that does not depend on matrix metalloproteinase (MMP) activity, while the inhibition of ion-stretch channels could counteract it. Overall, our results suggest that further research on mechanobiology could represent an alternative approach for the identification of novel molecular targets of osteosarcoma cell malignancy.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Estrés Mecánico , Osteosarcoma/genética , Movimiento Celular , Diferenciación Celular , Canales Iónicos , Neoplasias Óseas/genética
8.
Front Mol Biosci ; 10: 1297826, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38726050

RESUMEN

There has been an increasing focus on cancer mechanobiology, determining the underlying-induced changes to unlock new avenues in the modulation of cell malignancy. Our study used LC-MS untargeted metabolomic approaches and real-time polymerase chain reaction (PCR) to characterize the molecular changes induced by a specific moderate uniaxial stretch regimen (i.e., 24 h-1 Hz, cyclic stretch 0,5% elongation) on SAOS-2 osteosarcoma cells. Differential metabolic pathway analysis revealed that the mechanical stimulation induces a downregulation of both glycolysis and the tricarboxylic acid (TCA) cycle. At the same time, the amino acid metabolism was found to be dysregulated, with the mechanical stimulation enhancing glutaminolysis and reducing the methionine cycle. Our findings showed that cell metabolism and oxidative defense are tightly intertwined in mechanically stimulated cells. On the one hand, the mechano-induced disruption of the energy cell metabolism was found correlated with an antioxidant glutathione (GSH) depletion and an accumulation of reactive oxygen species (ROS). On the other hand, we showed that a moderate stretch regimen could disrupt the cytoprotective gene transcription by altering the expression levels of manganese superoxide dismutase (SOD1), Sirtuin 1 (SIRT1), and NF-E2-related factor 2 (Nrf2) genes. Interestingly, the cyclic applied strain could induce a cytotoxic sensitization (to the doxorubicin-induced cell death), suggesting that mechanical signals are integral regulators of cell cytoprotection. Hence, focusing on the mechanosensitive system as a therapeutic approach could potentially result in more effective treatments for osteosarcoma in the future.

9.
Biomolecules ; 12(2)2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35204815

RESUMEN

Carfilzomib is a last generation proteasome inhibitor (PI) with proven clinical efficacy in the treatment of relapsed/refractory multiple myeloma. This drug is considered to be extremely specific in inhibiting the chymotrypsin-like activity of the 20S proteasome, encoded by the ß5 subunit, overcoming some bortezomib limitations, the first PI approved for multiple myeloma therapy which is however burdened by a significant toxicity profile, due also to its off-target effects. Here, molecular approaches coupled with molecular docking studies have been used to unveil that the Insulin-Degrading Enzyme, a ubiquitous and highly conserved Zn2+ peptidase, often found to associate with proteasome in cell-based models, is targeted by carfilzomib in vitro. The drug behaves as a modulator of IDE activity, displaying an inhibitory effect over 10-fold lower than for the 20S. Notably, the interaction of IDE with the 20S enhances in vitro the inhibitory power of carfilzomib on proteasome, so that the IDE-20S complex is an even better target of carfilzomib than the 20S alone. Furthermore, IDE gene silencing after delivery of antisense oligonucleotides (siRNA) significantly reduced carfilzomib cytotoxicity in rMC1 cells, a validated model of Muller glia, suggesting that, in cells, the inhibitory activity of this drug on cell proliferation is somewhat linked to IDE and, possibly, also to its interaction with proteasome.


Asunto(s)
Antineoplásicos , Insulisina , Mieloma Múltiple , Antineoplásicos/farmacología , Humanos , Insulisina/genética , Insulisina/uso terapéutico , Simulación del Acoplamiento Molecular , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Oligopéptidos , Preparaciones Farmacéuticas , Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma/farmacología
10.
Polymers (Basel) ; 13(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34771363

RESUMEN

Waste rubber from end-of-life tires has been proved to be an excellent source of polymeric material for paving applications. Over the years, however, the rubberized asphalt technology has never been used in 'lean' (low bitumen content) asphalt mixtures typically used in arid regions. This study offers an insight on the potential benefits and drawbacks resulting from this technology if applied in such 'lean' mixes. Results show that the 'lean' nature of those asphalt mixes eliminates the potential benefits given by the modified bitumen for rutting performance. Instead, the aggregates gradation plays a major role in the response of the materials, with gap-graded mixtures often outperforming those with a dense-graded gradation. On the contrary, fatigue cracking resistance is affected by the bitumen properties, and rubberized asphalt perform better than others. The performance-based analysis suggests that the current specifications tend to overachieve the goal of reducing permanent deformation while cracking becomes a major concern which can be solved by using rubberized asphalt. In the field, gap-graded asphalt with rubberized bitumen showed the best response in terms of skid resistance and noise reduction.

11.
Microbiol Spectr ; 9(2): e0020521, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34643409

RESUMEN

The extraordinary global demand for reagents and diagnostic instruments needed for timely detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has rapidly affected their availability. In order to meet diagnostic needs, it has been necessary to develop new diagnostic procedures. To date, molecular diagnostic tools have represented the gold standard for diagnosis of SARS-CoV-2 infection, and thus an alternative and real-time PCR system was required. To this aim, a molecular rapid test which works with direct real-time RT-PCR may be a relevant aid. In the present work, the accuracy, sensitivity, and specificity of the bKIT Virus Finder COVID-19 rapid molecular test by Hyris Ltd. was evaluated. Moreover, the influence of a different swab storage medium composition was examined relative to that of a routinely used comparator assay. The Hyris Ltd. assay showed an overall agreement of 100% with the comparator based on a panel consisting of 74 retrospective positive nasopharyngeal swabs (NPSs), collected either in universal transport medium (UTM) or using ESwab. No false-positive result was achieved on samples that previously tested negative. Cross-reactivity screening on microorganisms that commonly colonize the human upper respiratory tract was not detected, excluding the risk of false-positive results. Simultaneously, drugs frequently administered to cure respiratory diseases did not interfere with the analytical performance of the assay. Our results showed that the Hyris Ltd. bKIT Virus Finder COVID-19 is a reliable assay for rapid qualitative detection of SARS-CoV-2, providing the advantage of less complex and unambiguous interpretation of results. Indeed, skilled technicians are not required, and thus the Hyris system is suitable as a rapid and easy system for SARS-CoV-2 diagnosis. IMPORTANCE In order to overcome the increased demand for diagnostic tools for the timely detection of SARS-CoV-2 infection, we tested the bKIT Virus Finder COVID-19 molecular rapid test by Hyris Ltd. The new system was confirmed as a reliable assay for rapid SARS-CoV-2 detection, since sensitivity and specificity parameters were fully satisfied. Moreover, the bKIT Virus Finder COVID-19 provides the advantage of easy results interpretation, since skilled technicians are not required, and thus the Hyris system is a valuable SARS-CoV-2 rapid diagnosis system.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Humanos , Límite de Detección , Nasofaringe/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/genética , Manejo de Especímenes
12.
Cancers (Basel) ; 13(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638337

RESUMEN

Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.

13.
Cells ; 10(9)2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34572032

RESUMEN

The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.


Asunto(s)
Anabolizantes/farmacología , Regeneración Ósea , Diferenciación Celular , Mecanotransducción Celular , Osteoblastos/citología , Animales , Humanos , Osteoblastos/efectos de los fármacos , Transducción de Señal
16.
Biochim Biophys Acta Mol Basis Dis ; 1866(7): 165793, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32275946

RESUMEN

Rett Syndrome (RTT) is a rare X-linked neurodevelopmental disorder which affects about 1: 10000 live births. In >95% of subjects RTT is caused by a mutation in Methyl-CpG binding protein-2 (MECP2) gene, which encodes for a transcription regulator with pleiotropic genetic/epigenetic activities. The molecular mechanisms underscoring the phenotypic alteration of RTT are largely unknown and this has impaired the development of therapeutic approaches to alleviate signs and symptoms during disease progression. A defective proteasome biogenesis into two skin primary fibroblasts isolated from RTT subjects harbouring non-sense (early-truncating) MeCP2 mutations (i.e., R190fs and R255X) is herewith reported. Proteasome is the proteolytic machinery of Ubiquitin Proteasome System (UPS), a pathway of overwhelming relevance for post-mitotic cells metabolism. Molecular, transcription and proteomic analyses indicate that MeCP2 mutations down-regulate the expression of one proteasome subunit, α7, and of two chaperones, PAC1 and PAC2, which bind each other in the earliest step of proteasome biogenesis. Furthermore, this molecular alteration recapitulates in neuron-like SH-SY5Y cells upon silencing of MeCP2 expression, envisaging a general significance of this transcription regulator in proteasome biogenesis.


Asunto(s)
Fosfatasa 2 de Especificidad Dual/genética , Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/genética , Codón sin Sentido/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Cultivo Primario de Células , Complejo de la Endopetidasa Proteasomal/genética , Proteolisis , Síndrome de Rett/patología , Piel/metabolismo , Piel/patología , Ubiquitina/genética
17.
Mol Cell Biochem ; 463(1-2): 101-113, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31595423

RESUMEN

Nutritional supplements are traditionally employed for overall health and for managing some health conditions, although controversies are found concerning the role of antioxidants-mediated benefits in vivo. Consistently with its critical role in systemic redox buffering, red blood cell (RBC) is recognized as a biologically relevant target to investigate the effects of oxidative stress. In RBC, reduction of the ATP levels and adenylate energy charge brings to disturbance in intracellular redox status. In the present work, several popular antioxidant supplements were orally administrated to healthy adults and examined for their ability to induce changes on the energy metabolism and oxidative status in RBC. Fifteen volunteers (3 per group) were treated for 30 days per os with epigallocatechin gallate (EGCG) (1 g green tea extract containing 50% EGCG), resveratrol (325 mg), coenzyme Q10 (CoQ10) (300 mg), vitamin C (1 g), and vitamin E (400 U.I.). Changes in the cellular levels of high-energy compounds (i.e., ATP and its catabolites, NAD and GTP), GSH, GSSG, and malondialdehyde (MDA) were simultaneously analyzed by ion-pairing HPLC. Response to oxidative stress was further investigated through the oxygen radical absorptive capacity (ORAC) assay. According to our experimental approach, (i) CoQ10 appeared to be the most effective antioxidant inducing a high increase in ATP/ADP, ATP/AMP, GSH/GSSG ratio and ORAC value and, in turn, a reduction of NAD concentration, (ii) EGCG modestly modulated the intracellular energy charge potential, while (iii) Vitamin E, vitamin C, and resveratrol exhibited very weak effects. Given that, the antioxidant potential of CoQ10 was additionally assessed in a pilot study which considered individuals suffering from Rett syndrome (RTT), a severe X-linked neuro-developmental disorder in which RBC oxidative damages provide biological markers for redox imbalance and chronic hypoxemia. RTT patients (n = 11), with the typical clinical form, were supplemented for 12 months with CoQ10 (300 mg, once daily). Level of lipid peroxidation (MDA production) and energy state of RBCs were analyzed at 2 and 12 months. Our data suggest that CoQ10 may significantly attenuate the oxidative stress-induced damage in RTT erythrocytes.


Asunto(s)
Antioxidantes/administración & dosificación , Metabolismo Energético/efectos de los fármacos , Eritrocitos , Síndrome de Rett , Administración Oral , Adolescente , Adulto , Niño , Preescolar , Eritrocitos/metabolismo , Eritrocitos/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/metabolismo , Síndrome de Rett/patología
18.
Future Oncol ; 15(24s): 35-40, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31385535

RESUMEN

Lenvatinib is a tyrosine kinase inhibitor (TKI) with antiproliferative and antiangiogenic effects indicated for the treatment of progressive, locally advanced or metastatic progressive thyroid carcinoma, refractory to radioactive iodine therapy. Antiangiogenic therapies induce ischemic necrosis of tumor tissue, with increased risk of hemorrhagic complications. The management of hemorrhagic risk is based on precautionary measures and for any surgical procedure, it is advised to interrupt the treatment in order to avoid complications. 'Flare-up' of tumor activity may follow TKI interruption. However, it is not known if continuing TKIs during minimally invasive interventions is safe. We report here the first case in which an embolization of metastasis is performed without interrupting lenvatinib treatment. The procedure was successful and free of complications.


Asunto(s)
Adenoma Oxifílico/tratamiento farmacológico , Embolización Terapéutica , Compuestos de Fenilurea/administración & dosificación , Quinolinas/administración & dosificación , Neoplasias de la Tiroides/tratamiento farmacológico , Adenoma Oxifílico/diagnóstico por imagen , Adenoma Oxifílico/patología , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/efectos adversos , Terapia Combinada , Humanos , Ilion/efectos de los fármacos , Ilion/patología , Radioisótopos de Yodo/administración & dosificación , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Compuestos de Fenilurea/efectos adversos , Quinolinas/efectos adversos , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/patología
19.
Chemotherapy ; 64(2): 62-80, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31387102

RESUMEN

BACKGROUND: Immune checkpoints are critical regulatory pathways of the immune system which finely tune the response to biological threats. Among them, the CD-28/CTLA-4 and PD-1/PD-L1 axes play a key role in tumour immune escape and are well-established targets of cancer immunotherapy. SUMMARY: The clinical experience accumulated to date provides unequivocal evidence that anti-CTLA-4, PD-1, or PD-L1 monoclonal antibodies, used as monotherapy or in combination regimes, are effective in a variety of advanced/metastatic types of cancer, with improved clinical outcomes compared to conventional chemotherapy. However, the therapeutic success is currently restricted to a limited subset of patients and reliable predictive biomarkers are still lacking. Key Message: The identification and characterization of additional co-inhibitory pathways as novel pharmacological targets to improve the clinical response in refractory patients has led to the development of different immune checkpoint inhibitors, the activities of which are currently under investigation. In this review, we discuss recent literature data concerning the mechanisms of action of next-generation monoclonal antibodies targeting LAG-3, TIM-3, and TIGIT co-inhibitory molecules that are being explored in clinical trials, as single agents or in combination with other immune-stimulating agents.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias/tratamiento farmacológico , Antígenos CD/inmunología , Antígenos CD/metabolismo , Antígeno CTLA-4/inmunología , Antígeno CTLA-4/metabolismo , Ensayos Clínicos como Asunto , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Humanos , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/metabolismo , Microambiente Tumoral , Proteína del Gen 3 de Activación de Linfocitos
20.
Pediatr Rheumatol Online J ; 17(1): 12, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940181

RESUMEN

BACKGROUND: Rheumatic heart disease (RHD) is a chronic condition responsible of congestive heart failure, stroke and arrhythmia. Almost eradicated in high-income countries (HIC), it persists in low- and middle-income countries. The purpose of the study was to assess the feasibility and meaningfulness of ultrasound-based RHD screening among the population of unaccompanied foreign minors in Italy and determine the burden of asymptomatic RHD among this discrete population. METHODS: From February 2016 to January 2018, Médecins Sans Frontières conducted a weekly mobile screening by echocardiography in reception centers and family houses for unaccompanied foreign minors in Rome, followed by fix echocardiographic retesting for those resulting positive at screening. 'Definite' and 'borderline' cases were defined according to the World Hearth Federation criteria. RESULTS: Six hundred fifty-three individuals (13-26 years old) were screened; 95.6% were below 18 years old (624/653). Six 'definite RHD' were identified at screening, yielding a detection rate of 9.2‰ (95% CI 4.1-20.3‰), while 285 (436.4‰) were defined as 'borderline' (95% CI 398.8-474.9‰). Out of 172 "non-negative borderline" cases available for being retested (113 "non-negative borderline" lost in follow-up), additional 11 were categorized as 'definite RHD', for a total of 17 'definite RHD', yielding a final prevalence of 26.0‰ (95% CI 16.2-41.5‰) (17/653), and 122 (122/653) were confirmed as 'borderline' (final prevalence of 186.8‰, 95% CI 158.7-218.7). In multivariate logistic regression analysis the presence of systolic murmur was a strong predictor for both 'borderline' (OR 4.3 [2.8-6.5]) and 'definite RHD' (OR 5.2 [1.7-15.2]), while no specific country/geographic area of origin was statistically associated with an increased risk of latent, asymptomatic RHD. CONCLUSIONS: Screening for RHD among the unaccompanied migrant minors in Italy proved to be feasible. The burden of 'definite RHD' was similar to that identified in resource-poor settings, while the prevalence of 'borderline' cases was higher than reported in other studies. In view of these findings, the health system of high-income countries, hosting migrants and asylum seekers, are urged to adopt screening for RHD in particular among the silent and marginalized population of refugee and migrant children.


Asunto(s)
Ecocardiografía/métodos , Tamizaje Masivo/métodos , Refugiados/estadística & datos numéricos , Cardiopatía Reumática/diagnóstico , Migrantes/estadística & datos numéricos , Adolescente , Adulto , Niño , Estudios de Factibilidad , Femenino , Humanos , Italia/epidemiología , Masculino , Prevalencia , Estudios Retrospectivos , Cardiopatía Reumática/epidemiología , Factores de Riesgo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA